Name:	Date ·	
Number .	Dute.	

Limiting Reagent and Percentage Yield

Dichlorine monoxide is produced by passing chlorine gas over heated mercury (II) oxide according to the following unbalanced reaction:

Balance the reaction. Suppose the quantity of the reactants is sufficient to produce 0.86 g of Cl₂O, but only 0.71 g is obtained. What is the percentage yield?

2 Consider the following reaction:

$$Be + 2 HCl \longrightarrow BeCl_2 + H_2$$

The theoretical yield of beryllium chloride was 10.7 g. Suppose the reaction actually yields 4.5 g. What is the percentage yield?

3 Nitrogen and hydrogen at high temperatures are converted to ammonia using the following reaction:

$$N_2 + 3 H_3 \longrightarrow 2 NH_3$$

When 400 g of H_2 are added to an excess amount of N_2 , 104 g of NH_3 are formed. Calculate the percentage yield.

Name:	Date:	

Limiting Reagent and Percentage Yield

Answers

Dichlorine monoxide is produced by passing chlorine gas over heated mercury (II) oxide according to the following unbalanced reaction:

$$_$$
 HgO \longrightarrow $\underline{^2}$ Cl $_2$ + $_$ HgCl $_2$ + $_$ Cl $_2$ O

Balance the reaction. Suppose the quantity of the reactants is sufficient to produce 0.86 g of Cl₂O, but only 0.71 g is obtained. What is the percentage yield?

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 = \frac{0.86 \text{ g}}{0.71 \text{ g}} \times 100 = 83\%$$

2 Consider the following reaction:

$$Be + 2 HCl \longrightarrow BeCl_2 + H_2$$

The theoretical yield of beryllium chloride was 10.7 g. Suppose the reaction actually yields 4.5 g. What is the percentage yield?

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 = \frac{4.5 \text{ g}}{10.7 \text{ g}} \times 100 = 42\%$$

3 Nitrogen and hydrogen at high temperatures are converted to ammonia using the following reaction:

$$N_2 + 3 H_2 \rightarrow 2 NH_2$$

When 400 g of H_2 are added to an excess amount of N_2 , 104 g of NH_3 are formed. Calculate the percentage yield.

$$400 \text{ g H}_{2} \times \frac{1 \text{ mol H}_{2}}{2 \text{ g H}_{2}} \times \frac{2 \text{ mol NH}_{3}}{3 \text{ mol H}_{2}} \times \frac{17 \text{ g NH}_{3}}{1 \text{ mol NH}_{3}} = 2267 \text{ g H}_{2} \text{ (theoretical)}$$

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 = \frac{104 \text{ g}}{2267 \text{ g}} \times 100 = 4.5\%$$