Limiting Reagent and Percentage Yield

Mhen nitroglycerine detonates, it produces a gaseous mixture of nitrogen, water, carbon dioxide, and oxygen. What is the theoretical yield of nitrogen when 5.55 g of nitroglycerine explodes? If the actual amount of nitrogen obtained is 0.991 g, what is the percentage yield? (Balance the reaction first)

2) What is the percentage yield of a chemical reaction in which 41.5 g of solid tungsten (VI) oxide reacts with excess hydrogen to produce metallic tungsten and 9.5 mL of water? The density of water is 1.00 g/mL

 $_$ WO₃ (s) + $_$ H₂ (g) \rightarrow $_$ W (s) + $_$ H₂O (l)

3 Arsenic (III) oxide is heated with carbon, which reduces the oxide to arsenic metal according to the following unbalanced equation:

 $As_2O_3 + C \rightarrow CO_2 + As$

Balance the equation. Suppose 8.87 g of As_2O_3 is used in the reaction and 5.33 g of As is produced. What is the percentage yield?

Name:	Date:	

Limiting Reagent and Percentage Yield

Answers

When nitroglycerine detonates, it produces a gaseous mixture of nitrogen, water, carbon dioxide, and oxygen. What is the theoretical yield of nitrogen when 5.55 g of nitroglycerine explodes? If the actual amount of nitrogen obtained is 0.991 g, what is the percentage yield? (Balance the reaction first)

$$4 C_3H_5(NO_3)_3(I) \rightarrow 6 N_2(g) + 12 CO_2(g) + 10 H_2O(g) + 0_2(g)$$

5.55 g
$$C_3H_5(NO_3)_3 \times \frac{1 \text{ mol } C_3H_5(NO_3)_3}{277.1 \text{ g } C_3H_5(NO_3)_3} \times \frac{6 \text{ mol } N_2}{4 \text{ mol } C_3H_5(NO_3)_3} \times \frac{28.02 \text{ g } N_2}{1 \text{ mol } N_2} = 1.03 \text{ g } N_2 \text{ (theoretical)}$$

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 = \frac{0.991 \text{ g}}{1.03 \text{ g}} \times 100 = 96.2\%$$

What is the percentage yield of a chemical reaction in which 41.5 g of solid tungsten (VI) oxide reacts with excess hydrogen to produce metallic tungsten and 9.5 mL of water? The density of water is 1.00 g/mL

$$_$$
 WO $_3$ (s) + $\underline{$ 3 H $_2$ (g) \longrightarrow $_$ W (s) + $\underline{$ 3 H $_2$ O (I)

41.5 g WO₃ ×
$$\frac{1 \text{ mol WO}_3}{231.9 \text{ g WO}_3}$$
 × $\frac{3 \text{ mol H}_2\text{O}}{1 \text{ mol WO}_3}$ × $\frac{18.02 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}$ × $\frac{1 \text{ mL H}_2\text{O}}{1 \text{ g H}_2\text{O}}$ = 9.67 mL H₂ (theoretical)

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 = \frac{9.5 \text{ mL}}{9.67 \text{ mL}} \times 100 = 98.2\%$$

Arsenic (III) oxide is heated with carbon, which reduces the oxide to arsenic metal according to the following unbalanced equation:

$$\underline{2}$$
 As₂O₃ + $\underline{3}$ C \rightarrow $\underline{3}$ CO₂ + $\underline{4}$ As

Balance the equation. Suppose 8.87 g of As_2O_3 is used in the reaction and 5.33 g of As is produced. What is the percentage yield?

8.87 g
$$As_2O_3 \times \frac{1 \text{ mol } As_2O_3}{197.84 \text{ g } As_2O_3} \times \frac{4 \text{ mol } As}{2 \text{ mol } As_2O_3} \times \frac{74.92 \text{ g As}}{1 \text{ mol As}} = 6.72 \text{ g As (theoretical)}$$

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 = \frac{5.33 \text{ g}}{6.72 \text{ g}} \times 100 = 79.3\%$$