Limiting Reactant Worksheet

Given the following reaction: (First, balance the reaction)

 $_$ $Al_2(SO_3)_3 + _$ $NaOH \rightarrow _$ $Na_2SO_3 + _$ $Al(OH)_3$

(a) Suppose 10 g of $Al_2(SO_3)_3$ reacts with 10 g of NaOH. Determine the limiting reactant.

- (b) Determine the number of grams of Al(OH)₃ produced.
- (c) Determine the number of moles of excess reactant left over in the reaction.

2 Given the following reaction:

$$CH_4 + 2 H_2O \rightarrow 4 H_2 + CO_2$$

How many liters of hydrogen can be produced from the reaction between 80 g of methane and 16.3 g of water? Determine the limiting reactant first.

Limiting Reactant Worksheet

Answers

Given the following reaction: (First, balance the reaction)

$$Al_2(SO_3)_3 + \underline{6} NaOH \rightarrow \underline{3} Na_2SO_3 + \underline{2} Al(OH)_3$$

(a) Suppose 10 g of Al₂(SO₃)₃ reacts with 10 g of NaOH. Determine the limiting reactant.

$$10 \text{ g Al}_{2}(SO_{3})_{3} \times \frac{1 \text{ mol Al}_{2}(SO_{3})_{3}}{294.15 \text{ g Al}_{2}(SO_{3})_{3}} \times \frac{3 \text{ mol Na}_{2}SO_{3}}{1 \text{ mol Al}_{2}(SO_{3})_{3}} \times \frac{126 \text{ g Na}_{2}SO_{3}}{1 \text{ mol Na}_{2}SO_{3}} = 12.9 \text{ g Na}_{2}SO_{3}$$

$$10 \text{ g NaOH} \times \frac{1 \text{ mol NaOH}}{40 \text{ g NaOH}} \times \frac{3 \text{ mol Na}_2\text{SO}_3}{6 \text{ mol NaOH}} \times \frac{126 \text{ g Na}_2\text{SO}_3}{1 \text{ mol Na}_2\text{SO}_3} = 15.8 \text{ g Na}_2\text{SO}_3$$

 $Al_2(SO_3)_3$ produces less amount of Na_2SO_3 than NaOH does. $Al_2(SO_3)_3$ is the limiting reagent.

(b) Determine the number of grams of Al(OH), produced.

10 g
$$Al_2(SO_3)_3 \times \frac{1 \text{ mol } Al_2(SO_3)_3}{294.15 \text{ g } Al_2(SO_3)_3} \times \frac{2 \text{ mol } Al(OH)_3}{1 \text{ mol } Al_2(SO_3)_3} \times \frac{78 \text{ g } Al(OH)_3}{1 \text{ mol } Al(OH)_3} = 5.3 \text{ g } Al(OH)_3$$

(c) Determine the number of moles of excess reactant left over in the reaction.

10 g
$$Al_2(SO_3)_3 \times \frac{1 \text{ mol } Al_2(SO_3)_3}{294.15 \text{ g } Al_2(SO_3)_3} \times \frac{6 \text{ mol NaOH}}{1 \text{ mol } Al_2(SO_3)_3} \times \frac{40 \text{ g NaOH}}{1 \text{ mol NaOH}} = 8.16 \text{ g of NaOH used}$$

Given the following reaction:

$$CH_4 + 2 H_2O \rightarrow 4 H_2 + CO_2$$

How many liters of hydrogen can be produced from the reaction between 80 g of methane and 16.3 g of water? Determine the limiting reactant first.

80 g CH₄ ×
$$\frac{1 \text{ mol CH}_4}{16 \text{ g CH}_4}$$
 × $\frac{2 \text{ mol H}_2\text{O}}{1 \text{ mol CH}_4}$ × $\frac{18 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}}$ = 180 g H₂O

16.3 g H₂O ×
$$\frac{1 \text{ mol H}_2\text{O}}{18 \text{ g H}_2\text{O}}$$
 × $\frac{1 \text{ mol CH}_4}{2 \text{ mol H}_2\text{O}}$ × $\frac{16 \text{ g CH}_4}{1 \text{ mol CH}_4}$ = 72.5 g CH₄

H₂O is the limiting reactant.

16.3 g H₂O ×
$$\frac{1 \text{ mol H}_2O}{18 \text{ g H}_2O}$$
 × $\frac{4 \text{ mol H}_2}{2 \text{ mol H}_2O}$ × $\frac{22.4 \text{ L H}_2}{1 \text{ mol H}_2}$ = 40.5 L H₂