Name:	Date:	
i varric .	Dute.	

Limiting Reagent and Percentage Yield

Consider the following reaction:

$$P_4O_{10} + 6 H_2O \rightarrow 4 H_3PO_4$$

a Suppose 3 moles of P_4O_{10} and 9 moles of H_2O react. What is the limiting reactant?

- b How many grams of H₃PO₄ form?
- © Suppose 575 grams of H₃PO₄ actually forms. What is the percentage yield?
- A vastamount of sulfur dioxide is formed from zinc sulfide from the following unbalanced reaction. First, balance the reaction.

$$_$$
 ZnS (s) + $_$ O₂ (g) \rightarrow $_$ ZnO (s) + $_$ SO₂ (g)

Suppose the typical yield is 86 %. How much SO_2 should be expected if 4897 g of ZnS are used?

Name:	Date:	

Limiting Reagent and Percentage Yield

Answers

Consider the following reaction:

$$P_4O_{10} + 6 H_2O \rightarrow 4 H_3PO_4$$

Suppose 3 moles of P₄O₁₀ and 9 moles of H₂O react. What is the limiting reactant?

$$3 \text{ mol } P_4 O_{10} \times \frac{4 \text{ mol } H_3 PO_4}{1 \text{ mol } P_4 O_{10}} = 12 \text{ mol } H_3 PO_4$$

$$9 \text{ mol H}_2\text{O} \times \frac{4 \text{ mol H}_3\text{PO}_4}{6 \text{ mol H}_2\text{O}} = 6 \text{ mol H}_3\text{PO}_4$$

H₂O is the limiting reagent.

b How many grams of H₃PO₄ form?

$$6 \text{ mol H}_2\text{O} \times \frac{98 \text{ g H}_3\text{PO}_4}{1 \text{ mol H}_3\text{PO}_4} = 588 \text{ g H}_3\text{PO}_4$$

© Suppose 575 grams of H_3PO_4 actually forms. What is the percentage yield?

Percentage yield =
$$\frac{575 \text{ g}}{588 \text{ g}} \times 100 = 97.8 \%$$

A vastamount of sulfur dioxide is formed from zinc sulfide from the following unbalanced reaction. First, balance the reaction.

$$\underline{2}$$
 ZnS (s) + $\underline{3}$ O₂ (g) \rightarrow $\underline{2}$ ZnO (s) + $\underline{2}$ SO₂ (g)

Suppose the typical yield is 86 %. How much SO_2 should be expected if 4897 g of ZnS are used?

4897 g ZnS ×
$$\frac{1 \text{ mol ZnS}}{97.48 \text{ g ZnS}}$$
 × $\frac{2 \text{ mol SO}_2}{2 \text{ mol ZnS}}$ × $\frac{64.07 \text{ g SO}_2}{1 \text{ mol SO}_2}$ = 3219 g SO₂ (theoretical)

Percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$$

$$\Rightarrow$$
 0.86 = $\frac{\text{actual yield}}{3219 \text{ g}}$