Limiting and Excess Reactants

① For the following equation, determine which reactant is limiting and which reactant is in excess. The amount of reagents used is shown.

$$3 \text{ Fe} + 4 \text{ H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + 4 \text{ H}_2$$

$$40 \text{ g} \quad 16 \text{ g}$$

- ② 35.5 g of silver nitrate is reacted with 35.5 grams of sodium sulfide, producing silver sulfide and sodium nitrite.
 - (a) Write and balance the equation.
 - (b) Calculate the number of grams of silver sulfide produced in grams.

- - (a) Write and balance the equation.
 - (b) How many grams of propane is this.

Limiting and Excess Reactants

Answers

Tor the following equation, determine which reactant is limiting and which reactant is in excess. The amount of reagents used is shown.

$$3 \text{ Fe} + 4 \text{ H}_2\text{O} \longrightarrow \text{Fe}_3\text{O}_4 + 4 \text{ H}_2$$

$$40 \text{ g} \quad 16 \text{ g}$$

$$40 \text{ g} \text{ Fe} \times \frac{1 \text{ mol Fe}}{55.8 \text{ g} \text{ Fe}} \times \frac{1 \text{ mol Fe}_3\text{O}_4}{3 \text{ mol Fe}} = 0.239 \text{ mol Fe}_3\text{O}_4$$

$$16 \text{ g} \text{ H}_2\text{O} \times \frac{1 \text{ mol H}_2\text{O}}{18 \text{ g} \text{ H}_2\text{O}} \times \frac{1 \text{ mol Fe}_3\text{O}_4}{4 \text{ mol H}_2\text{O}} = 0.222 \text{ mol Fe}_3\text{O}_4$$

0.222 mol is less than 0.239 mol. Therefore, the limiting reactant is H_2 0, and the excess reactant is Fe.

- ② 35.5 g of silver nitrate is reacted with 35.5 grams of sodium sulfide, producing silver sulfide and sodium nitrite.
 - (a) Write and balance the equation.

$$2 \text{ AgNO}_2 + \text{Na}_2 \text{S} \rightarrow \text{Ag}_2 \text{S} + 2 \text{ NaNO}_2$$

(b) Calculate the number of grams of silver sulfide produced in grams.

$$35.5 \text{ g AgNO}_2 \times \frac{1 \text{ mol AgNO}_2}{153.9 \text{ g AgNO}_2} \times \frac{1 \text{ mol Ag}_2 \text{S}}{2 \text{ mol AgNO}_2} = 0.115 \text{ mol Ag}_2 \text{S}$$

$$25.5 \text{ g No S}_2 \times \frac{1 \text{ mol Na}_2 \text{S}}{2 \text{ mol Ag}_2 \text{S}} = 0.455 \text{ mol Ag}_2 \text{S}$$

 $35.5 \text{ g Na}_2\text{S} \times \frac{1 \text{ mol Na}_2\text{S}}{78 \text{ g Na}_2\text{S}} \times \frac{1 \text{ mol Ag}_2\text{S}}{2 \text{ mol Na}_2\text{S}} = 0.455 \text{ mol Ag}_2\text{S}$

The amount of silver sulfide produced is 0.115 mol. Let us convert this into grams.

0.115 mol
$$Ag_2S \times \frac{247.8 \text{ g } Ag_2S}{1 \text{ mol } Ag_2S} = 28.5 \text{ g } Ag_2S$$

- 3 For the following reaction: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_3$
 - (a) Write and balance the equation.

$$0.37 \text{ g CO}_2 \times \frac{1 \text{ mol of CO}_2}{44.01 \text{ g CO}_2} \times \frac{1 \text{ mol C}_3 \text{H}_8}{3 \text{ mol CO}_2} = 0.00280 \text{ mol C}_3 \text{H}_8$$

(b) How many grams of propane is this.

$$0.00280 \text{ mol } C_3H_8 \times \frac{44.1 \text{ g } C_3H_8}{1 \text{ mol } C_3H_8} = 0.12348 \text{ g } C_3H_8$$

ChemistryLearner.com