STOICHIOMETRY LIMITING REAGENT

1	Consider	the	following	reaction:
\ - /			9	

 $_$ AgNO $_3$ + $_$ Na $_3$ PO $_4$ \longrightarrow $_$ Ag $_3$ PO $_4$ + $_$ NaNO $_3$

Balance the reaction.

[a] 200 grams of each reactant react. How many grams of silver phosphate are formed?

b How much excess reagent is left?

(2) Consider the following reaction:

$$_$$
 N_2 + $_$ H_2 \longrightarrow $_$ NH_3

Balance the reaction.

How many grams of NH_3 are produced when 28 g of N_2 reacts with 25 g of H_2 ? What is the limiting reagent? What is the excess reagent? How many grams of excess reagent remain?

STOICHIOMETRY LIMITING REAGENT

Answers

(1) Consider the following reaction:

$$3$$
 AgNO₃ + 2 Na₃PO₄ \longrightarrow 2 Ag₃PO₄ + 3 NaNO₃

Balance the reaction.

[a] 200 grams of each reactant react. How many grams of silver phosphate are formed?

200 g AgNO₃ ×
$$\frac{1 \text{ mol AgNO}_3}{170 \text{ g AgNO}_3}$$
 × $\frac{1 \text{ mol Ag}_3 PO_4}{3 \text{ mol AgNO}_3}$ × $\frac{419 \text{ g Ag}_3 PO_4}{1 \text{ mol Ag}_3 PO_4}$ = 164 g Ag₃PO₄

$$200 \text{ g Na}_{3} PO_{4} \times \frac{1 \text{ mol Na}_{3} PO_{4}}{164 \text{ g Na}_{3} PO_{4}} \times \frac{1 \text{ mol Ag}_{3} PO_{4}}{1 \text{ mol Na}_{3} PO_{4}} \times \frac{419 \text{ g Ag}_{3} PO_{4}}{1 \text{ mol Ag}_{3} PO_{4}} = 511 \text{ g Ag}_{3} PO_{4}$$

164 g of Ag₃PO₄ are produced.

b How much excess reagent is left?

$$200 \text{ g AgNO}_{3} \times \frac{1 \text{ mol AgNO}_{3}}{170 \text{ g AgNO}_{3}} \times \frac{1 \text{ mol Na}_{3} \text{PO}_{4}}{3 \text{ mol AgNO}_{3}} \times \frac{164 \text{ g Na}_{3} \text{PO}_{4}}{1 \text{ mol Na}_{3} \text{PO}_{4}} = 64.3 \text{ g Na}_{3} \text{PO}_{4} \text{ used}$$

$$200 \text{ g Na}_{3} \text{PO}_{4} - 64.3 \text{ g Na}_{3} \text{PO}_{4} = 135.7 \text{ g Na}_{3} \text{PO}_{4} \text{ remains}$$

2 Consider the following reaction:

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

Balance the reaction.

How many grams of NH_3 are produced when 28 g of N_2 reacts with 25 g of H_2 ? What is the limiting reagent? What is the excess reagent? How many grams of excess reagent remain?

$$28 \text{ g N}_{2} \times \frac{1 \text{ mol N}_{2}}{28 \text{ g N}_{2}} \times \frac{2 \text{ mol NH}_{3}}{1 \text{ mol N}_{2}} \times \frac{17 \text{ g NH}_{3}}{1 \text{ mol NH}_{3}} = 34 \text{ g NH}_{3}$$

25 g H₂ ×
$$\frac{1 \text{ mol H}_2}{2 \text{ g H}_2}$$
 × $\frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2}$ × $\frac{17 \text{ g NH}_3}{1 \text{ mol NH}_3}$ = 142 g NH₃

 N_2 is the limiting reagent, and H_2 is the excess reagent. 34 g of NH_3 can be produced. Let us calculate how much excess reagent remains.

28 g N₂ ×
$$\frac{1 \text{ mol N}_2}{28 \text{ g N}_2}$$
 × $\frac{3 \text{ mol H}_2}{1 \text{ mol N}_2}$ × $\frac{2 \text{ g H}_2}{1 \text{ mol H}_2}$ = 6 g H₂ used
25 g H₂ - 6 g H₂ = 19 g H₂ remains