Name:	Date:	
i varric .		

Stoichiometry Limiting Reagent

1 Consider the following reaction:

$$N_2 + 3 H_2 \longrightarrow 2 NH_3$$

(a) How many grams of NH_3 can be produced from the reaction of 28 g of N_2 and 25 g of H_2 ?

(b) How much of the excess reagent is left over?

2 Consider the following reaction:

$$Mg + 2 HCl \longrightarrow MgCl_2 + H_2$$

What volume of H_2 at STP is produced from the reaction of 50 g of Mg and 75 g of HCl?

3 Zinc and sulfur react to form zinc sulfide according to the following equation:

$$Zn + S \rightarrow ZnS$$

Suppose 25 g of zinc and 30 g of sulfur react. Which reagent is limiting?

Name:	Date:	

Stoichiometry Limiting Reagent

Answers

1 Consider the following reaction:

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

(a) How many grams of NH_3 can be produced from the reaction of 28 g of N_2 and 25 g of H_2 ?

$$28 \text{ g N}_2 \times \frac{1 \text{ mol N}_2}{28 \text{ g N}_2} \times \frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2} \times \frac{17 \text{ g NH}_3}{1 \text{ mol NH}_3} = 34 \text{ g NH}_3$$

25 g H₂ ×
$$\frac{1 \text{ mol H}_2}{2 \text{ g H}_2}$$
 × $\frac{2 \text{ mol NH}_3}{3 \text{ mol H}_2}$ × $\frac{17 \text{ g NH}_3}{1 \text{ mol NH}_3}$ = 142 g NH₃

 $34 \text{ g of NH}_3 \text{ can be produced.}$

(b) How much of the excess reagent is left over?

28 g N₂ ×
$$\frac{1 \text{ mol N}_2}{28 \text{ g N}_2}$$
 × $\frac{3 \text{ mol H}_2}{1 \text{ mol N}_2}$ × $\frac{2 \text{ g H}_2}{1 \text{ mol H}_2}$ = 6 g H₂ used

$$25 \text{ g H}_2 - 6 \text{ g H}_2 = 19 \text{ g H}_2 \text{ remains}$$

2 Consider the following reaction:

$$Mg + 2 HCl \longrightarrow MgCl_2 + H_2$$

What volume of H_2 at STP is produced from the reaction of 50 g of Mg and 75 g of HCl?

$$50 \text{ g Mg} \times \frac{1 \text{ mol Mg}}{24.3 \text{ g Mg}} \times \frac{1 \text{ mol H}_2}{1 \text{ mol Mg}} \times \frac{22.4 \text{ L H}_2}{1 \text{ mol H}_2} = 46 \text{ L H}_2$$

75 g HCl
$$\times$$
 $\frac{1 \text{ mol HCl}}{36.5 \text{ g HCl}} \times \frac{1 \text{ mol H}_2}{2 \text{ mol HCl}} \times \frac{22.4 \text{ L H}_2}{1 \text{ mol H}_2} = 23 \text{ L H}_2$

23 L H₂ is produced.

3 Zinc and sulfur react to form zinc sulfide according to the following equation:

$$Zn + S \rightarrow ZnS$$

Suppose 25 g of zinc and 30 g of sulfur react. Which reagent is limiting?

$$25 \text{ g Zn } \times \frac{1 \text{ mol Zn}}{65.4 \text{ g Zn}} \times \frac{1 \text{ mol ZnS}}{1 \text{ mol Zn}} \times \frac{97.48 \text{ g ZnS}}{1 \text{ mol ZnS}} = 37.3 \text{ g ZnS}$$

$$30 \text{ g S} \times \frac{1 \text{ mol S}}{32 \text{ g S}} \times \frac{1 \text{ mol ZnS}}{1 \text{ mol S}} \times \frac{97.48 \text{ g ZnS}}{1 \text{ mol ZnS}} = 91.2 \text{ g ZnS}$$

Zn is the limiting reagent.