Name :	Date :
	Empirical & Molecular Formula
Calculate the percent composition of tal. HCl	the following compounds.
b. K_2CO_3	
2. A compound contains 63.52 % iron an	d 36.48 % sulfur. Find its empirical formula.
3. A sample in the laboratory contains 1. Determine the empirical formula.	05 grams of nickel and 0.29 grams of oxygen.
4. The molar mass of a compound is 92 g contains 0.606 g N and 1.390 g O. Find the	g. Analysis of the sample indicates that it ne compound's molecular formula.
•	otive industry is shown to be 31.6% phosphorous, rmine the empirical formula of this acid.

Name:	 Date:	
	 Date.	

Percent Composition and Empirical & Molecular Formula

Answers

1. Calculate the percent composition of the following compounds.

a. HCl

```
Molar mass = 1 g + 35.5 g = 36.5 g

H: 1 g/36.5 g x 100% = 2.7 %

Cl: 35.5 g/ 36.5 g x 100% = 97.3%

b. K<sub>2</sub>CO<sub>3</sub>

Molar mass = 2 x 39.1 g + 12 g + 3 x 16 g = 138.2 g

K: 2 x 39.1 g/138.2 g x 100% = 56.6 %

C: 12 g/ 138.2 g x 100% = 8.68%

O: 3 x 16 g/ 138.2 g x 100% = 34.7%
```

2. A compound contains 63.52 % iron and 36.48 % sulfur. Find its empirical formula.

```
Fe: 63.52 \text{ g } / 56 \text{ g mol}^{-1} = 1.14 \text{ mol} / 1.14 \text{ mol} \rightarrow 1
S: 36.48 \text{ g } / 32 \text{ g mol}^{-1} = 1.14 \text{ mol} / 1.14 \text{ mol} \rightarrow 1
The empirical formula is FeS
```

3. A sample in the laboratory contains 1.05 grams of nickel and 0.29 grams of oxygen. Determine the empirical formula.

```
Ni: 1.05 \text{ g } /58.7 \text{ g mol}^{-1} = 0.0179 \text{ mol} / 0.0179 \text{ mol} \rightarrow 1
O: 0.29 \text{ g } /16 \text{ g mol}^{-1} = 0.018 \text{ mol} / 0.0179 \text{ mol} \rightarrow 1
The empirical formula is NiO
```

4. The molar mass of a compound is 92 g. Analysis of the sample indicates that it contains 0.606 g N and 1.390 g O. Find the compound's molecular formula.

```
N: 0.606 \text{ g} / 14 \text{ g mol}^{-1} = 0.0433 \text{ mol} / 0.0433 \text{ mol} \rightarrow 1
O: 1.390 \text{ g} / 16 \text{ g mol}^{-1} = 0.0869 \text{ mol} / 0.0433 \text{ mol} \rightarrow 2
The empirical formula is NO_2
Molecular mass = 14 \text{ g} + 2 \text{ x} 16 \text{ g} = 46 \text{ g} \rightarrow 92 \text{ g} / 46 \text{ g} = 2 \rightarrow 2 (NO_2)
Molecular formula = N_2O_4
```

5. An acid commonly used in the automotive industry is shown to be 31.6% phosphorous, 3.1% hydrogen, and 63.5% oxygen. Determine the empirical formula of this acid.

```
P: 31.6 g / 30.97 g mol<sup>-1</sup> = 1.02 mol/1.02 mol \rightarrow 1
H: 3.1 g / 1.01 g mol<sup>-1</sup> = 3.01 mol/1.02 mol \rightarrow 3
O: 63.5 g / 16 g mol<sup>-1</sup> = 4.08 mol/1.02 mol \rightarrow 4
The empirical formula is H_3PO_4
```