MASS MOLE STOICHIOMETRY WORKSHEET

1. Consider the following reaction:

$$N_2 + 2 O_2 \rightarrow N_2 O_4$$

- a. If 15 g of N₂O₄ was produced, how many moles of O₂ were required?
- b. If 4×10^{-3} moles of oxygen reacted, how many grams of N_2 were needed?
- 2. Consider the following reaction:

$$K_3PO_4 + AI(NO_3)_3 \rightarrow 3 KNO_3 + AIPO_4$$

- a. What is the mass of potassium nitrate produced when 2.04 moles of potassium phosphate react?
- b. If 5.8 g of aluminum phosphate are formed, how many moles of aluminum nitrate reacted?
- 3. Consider the following reaction:

$$CaC_2 + 2 H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

- a. If you have 5.5 mol of CaC₂, how much C₂H₂ do you get?
- b. How many moles of water are needed when $65\,\mathrm{g}$ of CaC_2 have reacted?
- 4. Hydrogen sulfide gas burns in oxygen to produce sulfur dioxide and water vapor:

$$2 H_2 S(g) + 3 O_2(g) \rightarrow 2 SO_2(g) + 2 H_2 O(g)$$

What mass of oxygen gas is consumed in a reaction that produces 4.6 mol SO₂?

MASS MOLE STOICHIOMETRY WORKSHEET

Answers

1. Consider the following reaction:

$$N_2 + 2 O_2 \rightarrow N_2 O_4$$

a. If 15 g of N₂O₄ was produced, how many moles of O₂ were required?

 $15 \text{ g N}_2\text{O}_4\text{ x} (1 \text{ mol N}_2\text{O}_4/92 \text{ g N}_2\text{O}_4) \text{ x} (2 \text{ mol O}_2/1 \text{ mol N}_2\text{O}_4) = 0.326 \text{ mol O}_2$

b. If 4×10^{-3} moles of oxygen reacted, how many grams of N_2 were needed?

 $4 \times 10-3 \text{ mol } O_2 \times (1 \text{ mol } N_2/2 \text{ mol } O_2) \times (28 \text{ g } N_2/1 \text{ mol } N_2) = 0.056 \text{ g } N_2$

2. Consider the following reaction:

$$K_3PO_4 + AI(NO_3)_3 \rightarrow 3 KNO_3 + AIPO_4$$

a. What is the mass of potassium nitrate produced when 2.04 moles of potassium phosphate react?

 $2.04 \text{ mol } K_3PO_4 \times (3 \text{ KNO}_3 \text{ mol}/1 \text{ mol } K_3PO_4) \times (101.1 \text{ g KNO}_3/1 \text{ mol } \text{KNO}_3) = 619 \text{ g KNO}_3$

b. If 5.8 g of aluminum phosphate are formed, how many moles of aluminum nitrate reacted?

 $5.8 \text{ g AIPO}_4 \text{ x } (1 \text{ mol AIPO}_4/122 \text{ g AIPO}_4) \text{ x } (1 \text{ mol AI(NO}_3)_3 / 1 \text{ mol AIPO}_4) = 0.0475 \text{ mol AI(NO}_3)_3 / 1 \text{ mol AIPO}_4$

3. Consider the following reaction:

$$CaC_2 + 2 H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

a. If you have 5.5 mol of CaC₂, how much C₂H₂ do you get?

5.5 mol CaC₂ x (1 mol C₂H₂/1 mol CaC₂) x (26 g C₂H₂/1 mol C₂H₂) = 143 g C₂H₂

b. How many moles of water are needed when $65\,\mathrm{g}$ of CaC_2 have reacted?

 $65 \text{ g CaC}_2 \times (1 \text{ mol CaC}_2/64.1 \text{ g CaC}_2) \times (2 \text{ mol H}_2\text{O}/1 \text{ mol C}_2\text{H}_2) = 2.03 \text{ mol H}_2\text{O}$

4. Hydrogen sulfide gas burns in oxygen to produce sulfur dioxide and water vapor:

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 SO_2(g) + 2 H_2O(g)$$

What mass of oxygen gas is consumed in a reaction that produces 4.6 mol SO₂?

4.6 mol SO_2 x (3 mol O_2 /2 mol SO_2) x (32 g O_2 /1 mol O_2) = 220.8 g O_2