Identifying and Balancing Chemical Reactions

Determine the reaction type for each of the following reactions and balance them.

(1)
$$AgNO_3 + Cu \rightarrow CuNO_3 + Ag$$

Type of reaction:

(2) NaCl
$$\rightarrow$$
 Na + Cl₂

Type of reaction:

(3)
$$N_2 + H_2 \rightarrow NH_3$$

Type of reaction:

(4)
$$HCI + FeS \rightarrow FeCl_2 + H_2S$$

Type of reaction:

(5) Fe +
$$CuSO_4 \rightarrow FeSO_4 + Cu$$

Type of reaction:

(6)
$$P_4O_{10} + H_2O \rightarrow H_3PO_4$$

Type of reaction:

(7) Fe +
$$H_2O \rightarrow Fe_3O_4 + H_2$$

Type of reaction:

(8)
$$H_3PO_4 \rightarrow H_4P_2O_7 + H_2O$$

Type of reaction:

(9)
$$Fe_2O_3 + C \rightarrow CO + Fe$$

Type of reaction:

(10) Fe +
$$O_2 \rightarrow Fe_2O_3$$

Type of reaction:

(11)
$$C_{10}H_{16} + CI_2 \rightarrow C + HCI$$

Type of reaction:

(12)
$$HCl + AgNO_3 \rightarrow HNO_3 + AgCl$$
 Type of reaction:

Name: .______ D

ate: ----

Identifying and Balancing Chemical Reactions

Answers

(1)
$$\frac{1}{1}$$
 AgNO₃ + $\frac{1}{1}$ Cu \rightarrow $\frac{1}{1}$ CuNO₃ + $\frac{1}{1}$ Ag

Type of reaction: Single replacement

(2) 2 NaCl
$$\rightarrow$$
 2 Na + 1 Cl₂

Type of reaction: **Decomposition**

(3)
$${}^{1}\text{N}_{2} + {}^{3}\text{H}_{2} \rightarrow {}^{2}\text{NH}_{3}$$

Type of reaction: Synthesis

(4) 2 HCl + 1 FeS
$$\rightarrow$$
 1 FeCl₂ + 1 H₂S

Type of reaction: Double replacement

(5) 1 Fe + 1 CuSO₄
$$\rightarrow$$
 1 FeSO₄ + 1 Cu

Type of reaction: Single replacement

(6)
$$1 P_4 O_{10} + 6 H_2 O \rightarrow 4 H_3 PO_4$$

Type of reaction: Synthesis

(7) 3 Fe + 4 H₂O
$$\rightarrow$$
 1 Fe₃O₄ + 4 H₂

Type of reaction: Single replacement

(8)
2
 2 1 2 2 2 3 2 2 3 2 3 2 3

Type of reaction: Decomposition

(9)
$$1 \operatorname{Fe_2O_3} + 3 \operatorname{C} \rightarrow 3 \operatorname{CO} + 2 \operatorname{Fe}$$

Type of reaction: Single replacement

(10) 4 Fe +
$$\frac{3}{3}$$
 O₂ \rightarrow 2 Fe₂O₃

Type of reaction: Synthesis

(11)
$${}^{1}_{10}H_{16} + {}^{8}_{10}CI_{2} \rightarrow {}^{10}_{10}C + {}^{16}_{10}HCI$$

Type of reaction: Single replacement

(12)
$$\frac{1}{1}$$
 HCl + $\frac{1}{1}$ AgNO₃ \rightarrow $\frac{1}{1}$ HNO₃ + $\frac{1}{1}$ AgCl

Type of reaction: Double replacement