| Name: |
Date: | | |-------|-----------|--| | | | | ## **Balancing Chemical Equations** Part A. Fill in the blanks with the most appropriate terms. | 1) A balanced | tells the story of a chemical reac | tion. | | | |--|------------------------------------|--|--|--| | are starting substances i | n the reaction, while | are new substances | | | | that form. The numbers in front of some of the formulas are called | | | | | | These numbers are used to the equation because chemical reaction | | | | | | must obey the law of | of matter. The numb | of matter. The number of atoms of each | | | | element on both sides of the equation must be equal because matter cannot be | | | | | | nor | . When balancing equation | ons, the only numbers | | | | that can be changed are | the . Remember tha | t | | | | mustnever be changed i | n order to balance an equation. | | | | Part B. Balance the following chemical equations. i. _____ $$H_3PO_4 +$$ ____ $Ca(OH)_2 \rightarrow$ ____ $Ca_3(PO_4)_2 +$ ____ H_2O ii. _____ $$NH_3$$ + ____ HCl \rightarrow ____ NH_4Cl iii. ____ Li + ___ $$H_2O \rightarrow$$ ___ LiOH + ___ H_2 iv. ____ $$Ca_3(PO_4)_2 +$$ ____ $SiO_2 +$ ___ $C \rightarrow$ ___ $CaSiO_3 +$ ___ $CO +$ ___ P v. _____ $$NH_3 +$$ _____ $O_2 \rightarrow$ _____ $N_2 +$ _____ H_2O vi. ____ $$FeS_2$$ + ____ O_2 \rightarrow ____ Fe_2O_3 + ____ SO_2 vii. ____ C + ___ SO $$_2$$ \rightarrow ___ CS $_2$ + ___ CO viii. _____ Al + ____ $$O_2 \rightarrow$$ _____ Al $_2O_3$ ## Balancing Chemical Equations ## **Answers** 1) A balanced <u>equation</u> tells the story of a chemical reaction. <u>Reactants</u> are starting substances in the reaction, while <u>products</u> are new substances that form. The numbers in front of some of the formulas are called <u>coefficients</u>. These numbers are used to <u>balance</u> the equation because chemical reactions must obey the law of <u>conservation</u> of matter. The number of atoms of each element on both sides of the equation must be equal because matter cannot be <u>created</u> nor <u>destroyed</u>. When balancing equations, the only numbers that can be changed are the <u>coefficients</u>. Remember that <u>formulas</u> mustnever be changed in order to balance an equation. i. $$2 H_3PO_4 + 3 Ca(OH)_2 \rightarrow 1 Ca_3(PO_4)_2 + 6 H_2O$$ ii. $$\underline{1}$$ NH₃ + $\underline{1}$ HCl \rightarrow $\underline{1}$ NH₄Cl iii. 2 Li + 2 $$H_2O \rightarrow$$ 2 LiOH + 1 H_2 iv. $$\underline{1}$$ $Ca_3(PO_4)_2 + \underline{3}$ $SiO_2 + \underline{5}$ $C \rightarrow \underline{2}$ $CaSiO_3 + \underline{5}$ $CO + \underline{2}$ P v. $$4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$$ vi. $$\underline{4}$$ FeS₂ + $\underline{11}$ O₂ \rightarrow $\underline{2}$ Fe₂O₃ + $\underline{8}$ SO₂ vii. $$\underline{}$$ C + $\underline{}$ SO₂ \rightarrow $\underline{}$ CS₂ + $\underline{}$ CO viii. $$\underline{}$$ Al + $\underline{}$ O₂ \rightarrow $\underline{}$ Al₂O₃