Name : Date :
HALF-LIFE PRACTICE PROBLEMS
1. The half-life of uranium-238 is 4.5 billion years, and the age of Earth is 4.5×10^9 years. What fraction of uranium-238 that was present when Earth was formed still remains?
2. A medical institution requests 1 gram of bismuth-214, which has a half-life of 20 minutes. How many grams of bismuth-214 must be prepared if the shipping time is 2 hours?
3. If you started with 120 grams of a radioactive substance and now have 15 grams, how many half-lives have passed?
4. The half-life of hafnium-156 is 0.025 seconds. How long will it take a sample weighing 560 grams to decay to $\frac{1}{4}$ of its original weight?
5. Pd-100 has a half-life of 3.6 days. If one had 6.02 x 10 ²³ atoms at the start, how many Pd-100 atoms would be present after 20 days?
6. A radioactive isotope decayed to 17/32 of its original mass after 60 minutes. What is its half-life?

Name :	 Date :

HALF-LIFE PRACTICE PROBLEMS

Answers

- 1. The half-life of uranium-238 is 4.5 billion years, and the age of Earth is 4.5×10^9 years. What fraction of uranium-238 that was present when Earth was formed still remains? $\frac{1}{2}$ still remains. This is because the half-life of uranium-238 and the age of the Earth are the same 4.5 billion years.
- 2. A medical institution requests 1 gram of bismuth-214, which has a half-life of 20 minutes. How many grams of bismuth-214 must be prepared if the shipping time is 2 hours?
 64 grams

If bismuth-24 has a half-life of 20 minutes, then in 2 hours, it will pass through = 120/20 = 6 half-lives. So a total of 64 grams will need to be shipped ($2^6 = 64$)

3. If you started with 120 grams of a radioactive substance and now have 15 grams, how many half-lives have passed?

3 half-lives

 $120 \times \frac{1}{2} = 60 \times \frac{1}{2} = 30 \times \frac{1}{2} = 15$

4. The half-life of hafnium-156 is 0.025 seconds. How long will it take a sample weighing 560 grams to decay to $\frac{1}{4}$ of its original weight?

0.05 seconds

To reach $\frac{1}{4}$ th of its original mass, 2 half-lives must pass. So, the time taken is = 0.025 x 2 = 0.05 seconds.

5. Pd-100 has a half-life of 3.6 days. If one had 6.02×10^{23} atoms at the start, how many Pd-100 atoms would be present after 20 days?

 1.28×10^{22}

The number of half-lives passed = 20/3.6 = 5.56So, the number of atoms left = $6.02 \times 10^{23} \times (\frac{1}{2})^{5.56} = 1.27 \times 10^{22}$

6. A radioactive isotope decayed to 17/32 of its original mass after 60 minutes. What is its half-life?

65.75 minutes (or 66 minutes)

 $(\frac{1}{2})^n = 17/32$ or n = 0.912, total number of half-lives that have passed So, the half-life of the radioactive isotope is 60/0.912 = 65.75 minutes