Name :	Date :
	of Radioactive Isotopes Worksheet
1. The half-life of iodin	e-125 is 60 days. What fraction of iodine-125 is left after 360 days?
2. Titanium-51 decays would remain after a	vith a half-life of 6 minutes. What fraction of a sample of titanium n hour?
3. Polonium-218 has a latoms will last after 3	nalf-life of 3 minutes. How much of a sample that initially had 200 80 minutes?
4. Gold-198 has a half-l decay to an ½ th of its	ife of 2.69 days. How will it take a sample weighing 180 grams to original mass?
	olf-life of 20 minutes. How many grams of a bismuth-214 sample will be left after an hour?
6. Chromium-51 has a	nalf-life of 28 days. What fraction remains after a year?

Half-life of Radioactive Isotopes Worksheet

Answers

1. The half-life of iodine-125 is 60 days. What fraction of iodine-125 is left after 360 days? $1/64^{th}$

After 360 days, iodine-125 passes through 6 half-lives (360/60 = 6). So the fraction left is $(\frac{1}{2})^6 = \frac{1}{64}$ th.

2. Titanium-51 decays with a half-life of 6 minutes. What fraction of a sample of titanium would remain after an hour?

 $1/1024^{th}$

After an hour, titanium-51 passes through 10 half-lives (60/6 = 10). So the fraction left is $(\frac{1}{2})^{10} = \frac{1}{1024}$ th.

3. Polonium-218 has a half-life of 3 minutes. How much of a sample that initially had 200 atoms will last after 30 minutes?

0.195 grams

After 30 minutes, the sample has passed through 10 half-lives. So the amount of the sample left is = $(\frac{1}{2})^{10}$ x 200 = 0.195 grams

4. Gold-198 has a half-life of 2.69 days. How will it take a sample weighing 180 grams to decay to an $\frac{1}{8}$ th of its original mass?

8.07 days

To decay to an $\frac{1}{8}$ th of its original mass, gold-198 must pass through 3 half-lives. So it takes the sample = $3 \times 2.69 = 8.07$ days to decay.

5. Bismuth-214 has a half-life of 20 minutes. How many grams of a bismuth-214 sample weighing 64 grams will be left after an hour?

8 grams

In one hour, the sample will pass through 60/20 = 3 half-lives. So after an hour, the amount of bismuth-214 left is = $(\frac{1}{2})^3$ x 64 = 8 grams

6. Chromium-51 has a half-life of 28 days. What fraction remains after a year? $1/8192^{th}$

The number of half-lives chromium-51 passes through in a year is 365/28 = 13. So the fraction of its left after a year is $= (\frac{1}{2})^{13} = 1/8192^{th}$