

Calculate the average atomic mass for	the following elements from	the given information about the
relevant isotopes:		

A. Isotope 1: Mass = 20 amu; Isotopic abundance = 90.92%

Isotope 2: Mass = 21 amu; Isotopic abundance = 0.257%

Isotope 3: Mass = 22 amu; Isotopic abundance = 8.82%

Looking at the periodic table, which element is this most likely?

B. Isotope 1: 40 amu (96.9% abundance)

Isotope 2: 42 amu (0.647% abundance)

Isotope 3: 44 amu (2.09% abundance)

Isotope 4: 48 amu (0.187% abundance)

Looking at the periodic table, which element is this most likely?

C. Sulfur-32 95.0% abundance Sulfur-33 0.76% abundance Sulfur-34 4.22% abundance Sulfur-36 0.014% abundance

Answers

Calculate the average atomic mass for the following elements from the given information about the relevant isotopes:

A. Isotope 1: Mass = 20 amu; Isotopic abundance = 90.92%

Isotope 2: Mass = 21 amu; Isotopic abundance = 0.257%

Isotope 3: Mass = 22 amu; Isotopic abundance = 8.82%

The percentage abundances are given as follows: I_1 : 90.92%, I_2 : 0.257%, I_3 : 8.82%

The atomic masses of these isotopes are approximately: l_1 : 20 amu, l_2 : 21 amu, l_3 : 31 amu

The average atomic mass is: $(0.9092 \times 20 \text{ amu}) + (0.00257 \times 21 \text{ amu}) + (0.0882 \times 22 \text{ amu}) = 20.18087 \text{ amu}$

Looking at the periodic table, which element is this most likely? _____Neo

B. Isotope 1: 40 amu (96.9% abundance)

Isotope 2: 42 amu (0.647% abundance)

Isotope 3: 44 amu (2.09% abundance)

Isotope 4: 48 amu (0.187% abundance)

The percentage abundances are given as follows: l_1 : 96.9%, l_2 : 0.647%, l_3 : 2.09%, l_4 : 0.187%

The atomic masses of these isotopes are: I₁: 40 amu, I₂: 42 amu, I₃: 44 amu, I₄: 48 amu

The average atomic mass is: $(0.969 \times 40 \text{ amu}) + (0.00647 \times 42 \text{ amu}) + (0.0209 \times 44 \text{ amu}) + (0.00187 \times 48 \text{ amu}) = 40.04 \text{ amu}$

Looking at the periodic table, which element is this most likely? <u>Calcium</u>

C. Sulfur-32 95.0% abundance Sulfur-33 0.76% abundance Sulfur-34 4.22% abundance Sulfur-36 0.014% abundance

The percentage abundances are given as follows: S-32: 95.0%, S-33: 0.76%, S-34: 4.22%, S-36: 0.014%

The atomic masses of these isotopes are approximately: S-32: 32 amu, S-33: 33 amu, S-34: 34 amu, S-36: 36 amu

The average atomic mass is: $(0.9500 \times 32 \text{ amu}) + (0.0076 \times 33 \text{ amu}) + (0.0422 \times 34 \text{ amu}) + (0.00014 \times 36 \text{ amu}) = 32.09024 \text{ amu}$