Practicing with Isotopes

1. Complete the following questions. Assume all the atoms are neutral.

⁴₂*He*

⁵⁶₂₆Fe

 $^{27}_{13}Al$

Element:

Element:

Element:

of protons: _____

of protons: _____

of protons:

of neutrons: _____

of neutrons:

of neutrons:

⁴⁰₂₀ Ca

²⁰₁₀Ne

¹⁴₆Ca

Element:

Element:

Element:

of protons:

of protons:

of protons: _____

of neutrons:

of neutrons:

of neutrons: _____

 $^{19}_{9}F$

 $^{1}_{1}H$

 ^{2}H

Element: ____

Element:

Element:

of protons: _____

of protons: _____

of protons:

of neutrons:

of neutrons:

of neutrons:

2. Calculate the average atomic mass for the following element from the given information about the relevant isotopes:

Isotope 1: Mass = 35 amu

Abundance = 75.53%

Isotope 2: Mass = 37 amu

Abundance = 24.47%

Name :	Score :	Date :
Р	racticing with Is	otopes
1. Complete the following ques	tions. Assume all the atoms are	e neutral.
$_{2}^{4}He$	$_{26}^{56} Fe$	$_{13}^{27}Al$
Element : Helium	Element: <u>Iron</u>	Element: Aluminium
# of protons:2	# of protons: <u>26</u>	# of protons:13
# of neutrons: 2	# of neutrons:56	# of neutrons: 27
⁴⁰ ₂₀ Ca	$_{10}^{20} Ne$	¹⁴ ₆ Ca
Element: Calcium	Element: Neon	Element: <u>Carbon</u>
# of protons:	# of protons:20	# of protons: 6
# of neutrons: 40	# of neutrons:10	# of neutrons: 14
$^{19}_{\ 9}F$	1_1H	$_{1}^{2}H$
Element: Fluorine	Element: <u>Hydrogen</u>	Element: <u>Hydrogen</u>
# of protons:9	# of protons:1	# of protons:1
# of neutrons:	# of neutrons:1	# of neutrons: 2
2. Calculate the average atomic the relevant isotopes:	c mass for the following eleme	nt from the given information about
Isotope 1: Mass = 35 amu Isotope 2: Mass = 37 amu	Abundance = 75.53% Abundance = 24.47%	
To calculate the average atom can use the following formula		the given isotopic information, you
Average Atomic Mass = (Frac (Fractional Abundance Isotop		Mass Isotope 1) +
Given the information:		
Isotope 1 has a mass of 35 am Isotope 2 has a mass of 37 am		· · · · · · · · · · · · · · · · · · ·
Now, plug these values into t	he formula:	
Average Atomic Mass = (0.75	53 * 35 amu) + (0.2447 * 37 am	nu)
Average Atomic Mass = (26.4	1155 amu) + (9.1199 amu)	

So, the average atomic mass for the element is approximately 35.53 atomic mass units (amu).

Average Atomic Mass ≈ 35.53145 amu

Which element is this? <u>Chlorine</u>