

🕆 Worksheet: Le Chatelier's Principle 🥁

1. Ammonia is produced commercially by the Haber reaction :

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) + heat$$

The formation of ammonia is favored by

(A) an increase in pressure

(B) a decrease in pressure

(C) removal of N_2 (g)

(D) removal of H_2 (g)

Ans._____

2. Given the closed system at equilibrium:

$$CO_2(g) \rightleftharpoons CO_2(aq.)$$

As the pressure on the system increases, the solubility of the CO₂ (g)

(A) decreases

(B) increases

(C) remains the same

Ans._____

3. Consider the following equilibrium system:

FeO (s) +
$$H_2$$
 (g) \rightleftharpoons Fe (s) + H_2 O (g)

Describe the effect that a decrease in volume would have on the position of equilibrium and the $[H_2]$ in the above system.

4. When the volume of the following mixture of gases is increased, what will be the effect on the equilibrium position?

$$4 \text{ HCl (g)} + O_2 (g) \rightleftharpoons 2 H_2 O (g) + 2 Cl_2 (g)$$

- 5. Predict the effect of decreasing the container volume for each equilibrium.
 - (a) $2 H_2O(g) + N_2(g) \rightleftharpoons 2 H_2(g) + 2 NO(g)$
 - (b) $SiO_2(s) + 4 HF(g) \Rightarrow SiF_4(g) + 2 H_2O(g)$
 - (c) CO (g) + H_2 (g) \rightleftharpoons C (s) + H_2 O (g)

🕝 Worksheet: Le Chatelier's Principle 🥁

1. Ammonia is produced commercially by the Haber reaction:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) + heat$$

The formation of ammonia is favored by

(A) an increase in pressure

(B) a decrease in pressure

(C) removal of N_2 (g)

(D) removal of H₂ (g)

Ans. A

2. Given the closed system at equilibrium:

$$CO_2(g) \rightleftharpoons CO_2(aq.)$$

As the pressure on the system increases, the solubility of the CO₂ (g)

(A) decreases

(B) increases

(C) remains the same

Ans. _____B

3. Consider the following equilibrium system:

FeO (s) +
$$H_2$$
 (g) \rightleftharpoons Fe (s) + H_2 O (g)

Describe the effect that a decrease in volume would have on the position of equilibrium and the [H₂] in the above system.

Since there is an equal number of gas particles on the reactant and product sides, there would be no shift to the equilibrium position. The [H₂] would increase as a result of decreasing the volume.

4. When the volume of the following mixture of gases is increased, what will be the effect on the equilibrium position?

$$4 \text{ HCl (g)} + O_2 (g) \rightleftharpoons 2 H_2 O (g) + 2 Cl_2 (g)$$

Shifts toward the left to increase the number of gas molecules.

5. Predict the effect of decreasing the container volume for each equilibrium.

(a) $2 H_2O(g) + N_2(g) \rightleftharpoons 2 H_2(g) + 2 NO(g)$

Equilibrium will shift to favor reactants.

(b) $SiO_2(s) + 4 HF(g) \Rightarrow SiF_4(g) + 2 H_2O(g)$

Equilibrium will shift to favor products.

(c) CO (g) + H_2 (g) \rightleftharpoons C (s) + H_2 O (g)

Equilibrium will shift to favor products.