| Name: |  |  |
|-------|--|--|
|       |  |  |



## pH Worksheet



| 1. | Consider the  | dissociation  | of aluminum | hydroxide.   | If the pl | ∃ is 9.85, | what is the |
|----|---------------|---------------|-------------|--------------|-----------|------------|-------------|
|    | concentration | ၊ of the alum | inum hydrox | ide solutior | า ?       |            |             |

2. Consider the dissociation of calcium hydroxide. If the pH is 11.64 and you have 2.55 L of solution, how many grams of calcium hydroxide are in the solution?

- 3. What is the pH of a solution with a  $[OH^{-}]$  of 5.7 x  $10^{-5}$  M?
- 4. A solution has a pH of 6.1. What is the concentration of hydroxide ions?
- 5. A solution is created by measuring  $3.60 \times 10^{-3}$  moles of NaOH and  $5.95 \times 10^{-4}$  moles of HCl into a container. Then, water is added until the final volume is 1.00 L. What is the pH of this solution?

6. A solution with a  $H^{+}$  concentration of 1.00 x  $10^{-7}$  M is considered neutral. Why?

Name:



## pH Worksheet



1. Consider the dissociation of aluminum hydroxide. If the pH is 9.85, what is the concentration of the aluminum hydroxide solution?

Al(OH)<sub>3</sub> (aq.) 
$$\rightleftharpoons$$
 Al<sup>3+</sup> (aq.) + 3 OH<sup>-</sup> (aq.)  
pOH = (14 - pH) = (14 - 9.85) = 4.15  
[OH<sup>-</sup>] = 10<sup>-pOH</sup> = 10<sup>-4.15</sup> = 7.08 x 10<sup>-5</sup> M  
[Al(OH)<sub>3</sub>] = [OH<sup>-</sup>]/3 = 7.08 x 10<sup>-5</sup> M/3 = 2.36 x 10<sup>-5</sup> M

2. Consider the dissociation of calcium hydroxide. If the pH is 11.64 and you have 2.55 L of solution, how many grams of calcium hydroxide are in the solution?

Ca(OH)<sub>2</sub> (aq.) 
$$\Rightarrow$$
 Ca<sup>2+</sup> (aq.) + 2 OH<sup>-</sup> (aq.)  
pOH = (14 - pH) = (14 - 11.64) = 2.36  
[OH<sup>-</sup>] = 10<sup>-pOH</sup> = 10<sup>-2.36</sup> = 4.4 x 10<sup>-3</sup> M  
Number of moles of Ca(OH)<sub>2</sub> = (4.4 x 10<sup>-3</sup> mol/L/2) x 2.55 L = 0.00561 mol  
Mass of NaOH = (0.00561 mol x 74.093 g/mol) = 0.416 g

3. What is the pH of a solution with a  $[OH^{-}]$  of 5.7 x  $10^{-5}$  M?

$$pOH = -log [OH^{-}] = -log [5.7 \times 10^{-5}] = 4.24$$
  $pH = 14 - 4.24 = 9.76$ 

4. A solution has a pH of 6.1. What is the concentration of hydroxide ions?

$$pOH = 14 - pH = 14 - 6.1 = 7.9$$
  $[OH^{-}] = 10^{-pOH} = 10^{-7.9} = 1.25 \times 10^{-8} M$ 

5. A solution is created by measuring  $3.60 \times 10^{-3}$  moles of NaOH and  $5.95 \times 10^{-4}$  moles of HCl into a container. Then, water is added until the final volume is 1.00 L. What is the pH of this solution?

Since there is both acid and base, we will assume a 1 mole acid:1 mole base ratio of neutralization. There is more base than acid so the leftover base will affect the solution's pH.

$$3.60 \times 10^{-3}$$
 moles -  $5.95 \times 10^{-4}$  moles =  $3.01 \times 10^{-3}$  moles NaOH  
 $3.01 \times 10^{-3}$  moles NaOH/1 L =  $3.01 \times 10^{-3}$  M NaOH  
pOH =  $-\log [OH^{-}] = -\log (3.01 \times 10^{-3}) = 2.521$   
pH =  $14 - pOH = 14 - 2.521 = 11.479$ 

6. A solution with a  $H^+$  concentration of 1.00 x  $10^{-7}$  M is considered neutral. Why?

pH = 
$$-\log [H^+] = -\log (1 \times 10^{-7}) = 7$$
  
pOH = 14 - pH = 14 - 7 = 7  
[OH<sup>-</sup>] =  $10^{-pOH} = 10^{-7} = 1.00 \times 10^{-7} M$ 

The concentrations of H<sup>+</sup> and OH<sup>-</sup> are equal, as are the pH and pOH, so the solution must be neutral.