Name :	Date :

Molarity and Dilution

riolarity and Briotion	
1. 28 g of KCl is dissolved in 225 mL of water. Calculate the molarity.	
2. Calculate the mass of KCI required to prepare 125 mL of 0.450 M solution.	
3. Calculate the volume of a 0.40 M KCl solution containing 8.00 g of KCl.	
4. How many moles of NaCl are in 350.0 mL of a 0.400 M solution?	
5. How many liters of a 0.300 M KCl solution contain 0.350 moles?	
6. You need to make 300 mL of a 0.40 M sodium chloride solution. The only available solution is 1.0 M. Determine how to make the needed dilution.	
7. You have to make 500mL of 0.50M BaCl ₂ . You have 2.0M barium chloride solution available Determine how to make the needed dilution.	

Name:	Data
ivalle.	Date:

Molarity and Dilution

Answers

1. 28 g of KCl is dissolved in 225 mL of water. Calculate the molarity.

Molarity = $(28 \text{ g} \times 1 \text{ mol}/74.5 \text{ g})/0.225 \text{ L} = 1.67 \text{ M}$

2. Calculate the mass of KCl required to prepare 125 mL of 0.450 M solution.

Mass = $0.450 \,\text{M} \times 0.125 \,\text{L} \times 74.5 \,\text{g/mol} = 4.20 \,\text{g}$

3. Calculate the volume of a 0.40 M KCl solution containing 8.00 g of KCl.

Volume = (8.00 g x 1 mol/74.5 g)/0.40 M = 0.27 L

4. How many moles of NaCl are in 350.0 mL of a 0.400 M solution?

Moles of NaCl = 0.400 M x 0.350 L = 0.140 M

5. How many liters of a 0.300 M KCl solution contain 0.350 moles?

Volume = 0.350 moles/0.300 M = 1.17 L

6. You need to make 300 mL of a 0.40 M sodium chloride solution. The only available solution is 1.0 M. Determine how to make the needed dilution.

$$M_1V_1 = M_2V_2$$

$$1.0 \text{ M} \times \text{V}_{1} = 0.40 \text{ M} \times 300 \text{ mL}$$

$$=> V_1 = (0.40 \text{ M} \times 300 \text{ mL})/1.0 \text{ M}$$

$$=> V_1 = 120 \text{ mL}$$

Volume to be added = 300 - 120 = 180 mL

You can achieve the desired solution by adding 180 mL of water to 1.0 M, 120 mL NaCl solution.

7. You have to make 500 mL of 0.50 M BaCl₂. You have 2.0 M barium chloride solution available. Determine how to make the needed dilution.

$$M_1V_1 = M_2V_2$$

$$2.0 \,\mathrm{M} \times \mathrm{V_1} = 0.50 \,\mathrm{M} \times 500 \,\mathrm{mL}$$

$$=> V_1 = (0.50 \text{ M} \times 500 \text{ mL})/2.0 \text{ M}$$

Volume to be added = 500 - 125 = 375 mL

You can achieve the desired solution by adding 375 mL of water to 2.0 M, 125 mL BaCl₂ solution.