Name :	Date :
	MOLARITY AND DILUTION WORKSHEET
1. 40.0 mL of	f 0.400 M NaOH solution is diluted to a final volume of 200.0 mL. Calculate the entration.
	of 85.0 mL of NaOH is diluted to a final volume of 290.0 mL, and the new molarity M . Calculate the original molarity of the base.
3. 150.0 mL c	of 0.025 M NaOH solution is added to 150.0 mL of water. Calculate the new molarity.
	of a solution of NaOH is diluted by adding 250.0 mL of water to produce a new of 0.0500 M. Calculate the molarity of the base.
	solution is concentrated by evaporation to a reduced final volume of 100.0 mL rity of 0.825 M. Calculate the original volume.
6. 850.0 mL o	of 0.280 M KOH solution is diluted to a final volume of 1000.0 mL. Calculate the entration.

Name:	Date:
	Bate:

MOLARITY AND DILUTION WORKSHEET

Answers

1. 40.0 mL of 0.400 M NaOH solution is diluted to a final volume of 200.0 mL. Calculate the new concentration.

$$M_1V_1 = M_2V_2$$

=> (0.400) (40.0) = M_2 (200.0)
=> M_2 = 0.0800 M

2. A solution of 85.0 mL of NaOH is diluted to a final volume of 290.0 mL, and the new molarity is 0.0500 M. Calculate the original molarity of the base.

$$M_1V_1 = M_2V_2$$

=> $M_1(85.0) = (0.0500) (290.0)$
=> $M_1 = 0.171 M$

3. 150.0 mL of 0.025 M NaOH solution is added to 150.0 mL of water. Calculate the new molarity.

$$M_1V_1 = M_2V_2$$

=> (0.025) (150.0) = M_2 (300.0)
=> M_2 = 0.013 M

4. 220.0 mL of a solution of NaOH is diluted by adding 250.0 mL of water to produce a new molarity of 0.0500 M. Calculate the molarity of the base.

$$M_1V_1 = M_2V_2$$

=> $M_1(220.0) = (0.0500) (470.0)$
=> $M_1 = 0.107 M$

5. A 0.350 M solution is concentrated by evaporation to a reduced final volume of 100.0 mL and molarity of 0.825 M. Calculate the original volume.

$$M_1V_1 = M_2V_2$$

=> (0.350) $V_1 = (0.825)$ (100.0)
=> $V_1 = 236$ mL

6. 850.0 mL of 0.280 M KOH solution is diluted to a final volume of 1000.0 mL. Calculate the new concentration.

$$M_1V_1 = M_2V_2$$

=> (0.280) (850.0) = M_2 (1000.0)
=> M_2 = 0.238 M