Making Dilution Worksheet

1. You need to make 10.0 L of 1.2 M KNO $_3$. What molarity would the potassium nitrate solution need to be if you used only 2.5 L of it?
2. Using a 4.0 M solution of MgSO $_{\rm 4}$, determine how to make 300 mL of a 1.7 M dilution.
3. If you dilute 174 mL of a 1.6 M solution of LiCl to 1.0 L, determine the new concentration of the solution.
4. One liter of a solution is prepared by dissolving 125.6 g of NaF in it. If you took 180 mL of that solution and diluted it to 500 mL, determine the molarity of the resulting solution.
5. Exactly 16.0 mL of solution A is diluted to 300 mL, resulting in a new solution B with a 0.50 M concentration. If the solution was made with NaCl, determine the number of grams of NaCl needed to make 1.00 L of the original solution A.

Making Dilution Worksheet

Answers

1. You need to make 10.0 L of 1.2 M KNO₃. What molarity would the potassium nitrate solution need to be if you used only 2.5 L of it?

$$M_1V_1 = M_2V_2$$

=> 1.2 M × 10.0 L = M_2 x 2.5 L
=> M_2 = (1.2 M × 10.0 L)/2.5 L = 4.8 M

2. Using a 4.0 M solution of MgSO $_{4}$, determine how to make 300 mL of a 1.7 M dilution.

```
M_1V_1 = M_2V_2
=> 4 M x V_1 = 1.7 M x 300 mL
=> V_1 = (1.7 M x 300 mL)/4 M = 128 mL
Volume of water to be added = 300 - 128 = 172 mL
```

3. If you dilute 174 mL of a 1.6 M solution of LiCl to 1.0 L, determine the new concentration of the solution.

```
M_1V_1 = M_2V_2
=> 1.6 M x 0.174 L = M_2 x 1.0 L
=> M_2 = (1.6 M x 0.174 L)/1.0 L = 0.28 M
```

4. One liter of a solution is prepared by dissolving 125.6 g of NaF in it. If you took 180 mL of that solution and diluted it to 500 mL, determine the molarity of the resulting solution.

```
Moles of NaF (M_1) = 126 g x 1 mol/42 g = 3 mol
Molarity (M_1) = 3 mol/1 L = 3 M
M_1V_1 = M_2V_2
=> 3 M x 180 mL = M_2 x 500 mL
=> M_2 = (3 M x 180 mL)/500 mL = 1.08 M
```

5. Exactly 16.0 mL of solution A is diluted to 300 mL, resulting in a new solution B with a 0.50 M concentration. If the solution was made with NaCl, determine the number of grams of NaCl needed to make 1.00 L of the original solution A.

```
M_1V_1 = M_2V_2
=> M_1 \times 16 \text{ mL} = 0.5 \text{ M} \times 300 \text{ mL}
=> M_1 = (0.5 \text{ M} \times 300 \text{ mL})/16 \text{ mL} = 9.38 \text{ M}
Moles of NaCl = 9.38 \text{ M} \times 1.00 \text{ L} = 9.38 \text{ mol}
Amount of NaCl = 9.38 \text{ mol} \times 58.5 \text{ g/mol} = 548.4 \text{ g}
```