Name:	Date :		
Nuclear Equation	s Worksheet		
1. Complete the following nuclear reactions :			
a) ${}^{35}_{17}\text{Cl} + {}^{1}_{0}n \rightarrow {}^{35}_{16}\text{S} + \underline{\hspace{1cm}}$	e) $_{90}^{229}$ Th $\rightarrow _{2}^{4}$ He +		
b) ${}^{20}_{8}\text{O} \rightarrow {}^{20}_{9}\text{F} + \underline{\hspace{1cm}}$	f) ${}^{54}_{26}$ Fe + ${}^{1}_{0}n \rightarrow {}^{1}_{1}$ H +		
c) ${}^{104}_{47}{\rm Ag} \rightarrow {}^{0}_{1}e +$	g) $\rightarrow {}_{-1}^{0}e + {}_{24}^{54}Cr$		
d) ${}^{238}_{92}$ U + ${}^{12}_{6}$ C $\rightarrow {}^{246}_{98}$ Cf +	h) $^{207}_{87}{ m Bi} + {}^{0}_{-1}e \rightarrow$		
2. Write the balanced equations for these nuclear reactions. a) Neutron emission by $^{88}{\rm Br}$			
b) Electron absorption by $^{116}\mathrm{Sb}$			
c) Positron emission by $^{184}{ m Hg}$			
d) Alpha emission by ²²⁹ Th			
e) Neutron capture by $^{200}{ m Hg}$			
3. Match these statements with a given choice (A, B, or	C). They may be used more than once.		
A – Fission B – Fusion C – Cold fus	ion		
i. The type of reaction in the sun.			
ii. The type of reaction in atomic bombs.			
iii. An atomic nucleus is split into two roughly equal parts.			
iv. Requires incredibly high temperatures.			
v. Type of reaction in a nuclear power plant.			
vi. Takes place at room temperature.			

vii. 2 very light isotopes form a heavier one.

viii. Main type of reaction in a hydrogen bomb.

Name :	Date:	

Nuclear Equations Worksheet

1. Complete the following nuclear reactions:

a)
$${}_{17}^{35}\text{Cl} + {}_{0}^{1}n \rightarrow {}_{16}^{35}\text{S} + {}_{\underline{1}}^{2}\text{H}$$

e)
$$_{90}^{229}$$
Th $\rightarrow _{2}^{4}$ He + $_{88}^{225}$ Ra

b)
$${}^{20}_{8}\text{O} \rightarrow {}^{20}_{9}\text{F} + {}^{0}_{-1}\text{O}$$

f)
$$_{26}^{54}$$
 Fe + $_{0}^{1}n \rightarrow _{1}^{1}$ H + $_{25}^{54}$ Mn

c)
$${}^{104}_{47}{\rm Ag} \rightarrow {}^{0}_{1}e + {}^{104}_{46}{\rm Pd}$$

g)
$$\frac{54}{25}$$
Mn $\rightarrow {}_{-1}^{0}e + {}_{24}^{54}$ Cr

d)
$$_{92}^{238}$$
U + $_{6}^{12}$ C $\rightarrow _{98}^{246}$ Cf + $_{0}^{1}$ n

h)
$$^{207}_{87}$$
Bi + $^{0}_{-1}e \rightarrow ^{207}_{82}$ Pb

- 2. Write the balanced equations for these nuclear reactions.
- a) Neutron emission by ${}^{88}\mathrm{Br}$

$${}^{88}_{35}$$
Br $\rightarrow {}^{87}_{35}$ Br + ${}^{1}_{0}$ n

b) Electron absorption by $^{116}\mathrm{Sb}$

$$^{116}_{51}Sb \rightarrow ^{0}_{-1}e + ^{116}_{50}Sn$$

c) Positron emission by $^{184}{\rm Hg}$

$$^{184}_{80}$$
Hg $\rightarrow ^{0}_{+1}e + ^{184}_{79}$ Au

d) Alpha emission by ²²⁹Th

$$^{229}_{90}$$
Th $\rightarrow ^{225}_{88}$ Ra + $^{4}_{2}$ He

e) Neutron capture by $^{200}{
m Hg}$

$$^{200}_{80}$$
Hg + $^{1}_{0}$ n $\rightarrow ^{201}_{80}$ Hg

- 3. Match these statements with a given choice (A, B, or C). They may be used more than once.
 - A Fission
- B Fusion
- C Cold fusion
- i. The type of reaction in the sun.
- ii. The type of reaction in atomic bombs.
- iii. An atomic nucleus is split into two roughly equal parts. A
- iv. Requires incredibly high temperatures. _____B__
- v. Type of reaction in a nuclear power plant. A
- vii. 2 very light isotopes form a heavier one.
- viii. Main type of reaction in a hydrogen bomb. B
 ChemistryLearner.com