Q Ave

Average Atomic Mass Calculation Worksheet

Answer the following questions.

1. The metal titanium commonly has five isotopes. These are those isotopes, along with the

⁴⁷Ti - 7.8%

⁴⁸Ti - 73.4%

⁴⁹Ti - 5.5%

⁵⁰Ti - 5.3%

Using this information, determine the average atomic mass of titanium.

2. Complete the table

Isotope	Mass (amu)	Relative Abundance (%)
²⁰ Ne	19.992	90.51
²¹ Ne	20.994	
²² Ne		9.22

- 3. Rubidium has two common isotopes, ⁸⁵Rb and ⁸⁷Rb. If the abundance of ⁸⁵Rb is 72.2% and the abundance of ⁸⁷Rb is 27.8%, what is the average atomic mass of rubidium?
- 4. Why is the average atomic mass of a ¹²C atom reported as 12.011 amu in the periodic table?

Average Atomic Mass Calculation Worksheet

Answers

1. The metal titanium commonly has five isotopes. These are those isotopes, along with the

⁴⁷Ti - 7.8%

⁴⁸Ti - 73.4%

⁴⁹Ti - 5.5%

50Ti - 5.3%

Using this information, determine the average atomic mass of titanium.

Average atomic mass of titanium = $(46 \times 0.08) + (47 \times 0.078) + (48 \times 0.734) + (49 \times 0.055) + (50 \times 0.053) = 3.68 + 3.67 + 35.232 + 2.695 + 2.65 = 47.927$ amu

2. Complete the table

Isotope	Mass (amu)	Relative Abundance (%)
²⁰ Ne	19.992	90.51
²¹ Ne	20.994	0.27%
²² Ne	22.002	9.22

3. Rubidium has two common isotopes, ⁸⁵Rb and ⁸⁷Rb. If the abundance of ⁸⁵Rb is 72.2% and the abundance of ⁸⁷Rb is 27.8%, what is the average atomic mass of rubidium?

Average atomic mass of rubidium = $(85 \times 0.722) + (87 \times 0.278) = 61.37 + 24.186$ = 85.556 amu

4. Why is the average atomic mass of a ¹²C atom reported as 12.011 amu in the periodic table?

The mass of carbon is reported as 12.011 amu in the periodic table because carbon exists as a mixture of 12 C and 13 C, with the relative abundances of these isotopes being 98.93% and 1.07%, respectively.