| Name: | Date: | | |-------|-------|--| | | | | Answer the following questions. | 1) | Europium (Eu) has two isotopes - | ¹⁵¹ Eu (abundance 48.03%) and | ¹⁵³ Eu | |----|----------------------------------|--|-------------------| | | (abundance 51.97%). What is the | average atomic mass of Eu? | | 2) Calculate the average atomic mass of copper if ⁶³Cu is 69.17% abundant and ⁶⁵Cu is 30.83% abundant. 3) Calculate the average atomic mass of iodine if the natural composition of the element is 80% ¹²⁷I, 17% ¹²⁶I, and 3% ¹²⁸I. 4) Calculate boron's (B) atomic mass, if the natural abundance for its isotopes is 19.9% ^{10}B and 80.1% ^{11}B . | Name: | | | |-------|--------|--------| | | Name : | Date : | ## Answers 1) Europium (Eu) has two isotopes - ¹⁵¹Eu (abundance 48.03%) and ¹⁵³Eu (abundance 51.97%). What is the average atomic mass of Eu? Average atomic mass of Eu = $(151 \times 0.4803) + (153 \times 0.5197) = 72.5253 + 79.5141$ = 152.0394 amu 2) Calculate the average atomic mass of copper if ⁶³Cu is 69.17% abundant and ⁶⁵Cu is 30.83% abundant. Average atomic mass of $Cu = (63 \times 0.6917) + (65 \times 0.3083) = 43.5771 + 20.0395 = 63.6166$ amu 3) Calculate the average atomic mass of iodine if the natural composition of the element is 80% 127 I, 17% 126 I, and 3% 128 I. Average atomic mass of I = $(127 \times 0.8) + (126 \times 0.17) + (128 \times 0.03)$ = 101.6 + 21.42 + 3.84 = 126.86 amu 4) Calculate boron's (B) atomic mass, if the natural abundance for its isotopes is 19.9% ^{10}B and 80.1% ^{11}B . Average atomic mass of B = $(10 \times 0.199) + (11 \times 0.801) = 1.99 + 8.811 = 10.801$ amu