Name:	Date:	

Answer the following questions.

1)	Europium (Eu) has two isotopes -	¹⁵¹ Eu (abundance 48.03%) and	¹⁵³ Eu
	(abundance 51.97%). What is the	average atomic mass of Eu?	

2) Calculate the average atomic mass of copper if ⁶³Cu is 69.17% abundant and ⁶⁵Cu is 30.83% abundant.

3) Calculate the average atomic mass of iodine if the natural composition of the element is 80% ¹²⁷I, 17% ¹²⁶I, and 3% ¹²⁸I.

4) Calculate boron's (B) atomic mass, if the natural abundance for its isotopes is 19.9% ^{10}B and 80.1% ^{11}B .

Name:		
	Name :	Date :

Answers

1) Europium (Eu) has two isotopes - ¹⁵¹Eu (abundance 48.03%) and ¹⁵³Eu (abundance 51.97%). What is the average atomic mass of Eu?

Average atomic mass of Eu = $(151 \times 0.4803) + (153 \times 0.5197) = 72.5253 + 79.5141$ = 152.0394 amu

2) Calculate the average atomic mass of copper if ⁶³Cu is 69.17% abundant and ⁶⁵Cu is 30.83% abundant.

Average atomic mass of $Cu = (63 \times 0.6917) + (65 \times 0.3083) = 43.5771 + 20.0395 = 63.6166$ amu

3) Calculate the average atomic mass of iodine if the natural composition of the element is 80% 127 I, 17% 126 I, and 3% 128 I.

Average atomic mass of I = $(127 \times 0.8) + (126 \times 0.17) + (128 \times 0.03)$ = 101.6 + 21.42 + 3.84 = 126.86 amu

4) Calculate boron's (B) atomic mass, if the natural abundance for its isotopes is 19.9% ^{10}B and 80.1% ^{11}B .

Average atomic mass of B = $(10 \times 0.199) + (11 \times 0.801) = 1.99 + 8.811 = 10.801$ amu