Name : Date :
Mass Mole Conversion Worksheet
Answer the following questions. 1 How many moles are present in 28 grams of CO ₂ ?
② How many moles are present in 79.85 grams of Fe_2O_3 ?
3 How many moles are present in 8.045 grams of H_2CO_3 ?
4 How many moles are present in 27.2 grams of H ₂ O?
⑤ How many moles are present in 72.9 grams of HCl?
⑥ How many moles are present in 140 grams of NaOH?

7 How many moles are present in 45.7 grams of CaCO₃?

Name:	 Date:	

Mass Mole Conversion Worksheet

Answers

1 How many moles are present in 28 grams of CO₂?

Molar mass of $CO_2 = 44.01$ g/mol Number of moles = 28/44.01 = 0.636 moles

② How many moles are present in 79.85 grams of Fe_2O_3 ?

Molar mass of $Fe_2O_3 = 159.7$ g/mol Number of moles = 79.85/159.7 = 0.5 moles

3 How many moles are present in 8.045 grams of H₂CO₃?

Molar mass of $H_2CO_3 = 62.03$ g/mol Number of moles = 8.045/62.03 = 0.129 moles

4 How many moles are present in 27.2 grams of H₂O?

Molar mass of $H_2O = 18$ g/mol Number of moles = 27.2/18 = 1.51 moles

5 How many moles are present in 72.9 grams of HCl?

Molar mass of HCl = 36.5 g/mol Number of moles = 36.5/72.9 = 0.5 moles

6 How many moles are present in 140 grams of NaOH?

Molar mass of NaOH = 40 g/molNumber of moles = 140/40 = 3.5 moles

7 How many moles are present in 45.7 grams of CaCO₃?

Molar mass of $CaCO_3 = 100 \text{ g/mol}$ Number of moles = 45.7/100 = 0.458 moles