Name :	 Date:

- Molar Ratios Worksheet -

Here is a balanced chemical equation.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

a) How many moles of Fe are produced by 3 moles of Fe₂O₃?

b) How many moles of CO_2 are produced by 2.5 moles of CO?

c) How many moles of Fe_2O_3 are needed to produce 45 g of Fe from this reaction?

d) How many moles of Fe are produced alongside 0.89 moles of CO₂?

e) How many moles of CO are needed to react with 5 moles of Fe₂O₃?

 Date:	
	Date:

-∞Molar Ratios Worksheet ∞-

Answers

Here is a balanced chemical equation.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

- a) How many moles of Fe are produced by 3 moles of Fe_2O_3 ? In this reaction, 1 mole of Fe_2O_3 produces 2 moles of Fe So 3 moles of Fe_2O_3 produce 6 moles of Fe
- b) How many moles of CO₂ are produced by 2.5 moles of CO? In this reaction, 3 moles of CO₂ are produced by 3 moles of CO So, 2.5 moles of CO produce 2.5 moles of CO₂
- c) How many moles of Fe_2O_3 are needed to produce 45 g of Fe from this reaction? Molar mass of Fe = 55.845 g/mol 1 mole of Fe weighs 55.845 g In this reaction, 2 moles of Fe, i.e., 111.69 g of Fe is produced by 1 mole of Fe_2O_3 So, 45 g of Fe is produced by 0.4 moles of Fe_2O_3
- d) How many moles of Fe are produced alongside 0.89 moles of CO_2 ? In this reaction, 2 moles of Fe are produced alongside 3 moles of CO_2 So, the number of moles of Fe produced alongside 0.89 moles of CO_2 = (3/2) x 0.89 = 1.34 moles
- e) How many moles of CO are needed to react with 5 moles of Fe_2O_3 ? In this reaction, 1 mole of Fe_2O_3 reacts with 3 moles of CO So, the number of moles of CO needed = 3 x 5 = 15 moles