| Name: | Date : | |-------|--------| ## Mole Conversion Practice Problems Worksheet Answer the following questions. 1 How much does 6.25×10^{24} molecules SF_4 weigh? 2 How many moles are present in 245 grams of Li_2CO_3 ? 3 How many atoms constitute 400 grams of gold? 4 How many molecules constitute 325 grams of N_2O_5 ? 5 How much does 3.45 moles of $Al_2(SO_4)_3$ weigh? | Name : Date : | |---------------| |---------------| ## Mole Conversion Practice Problems Worksheet ## **Answers** 1 How much does 6.25×10^{24} molecules SF₄ weigh? Molar mass of SF_4 = 108.9 g/mol 6.023 x 10^{23} molecules weigh 108.9 grams 6.25 x 10^{24} molecules weigh 108.9 x [(6.25 x 10^{24} /6.023 x 10^{23})] = 1130 grams 2 How many moles are present in 245 grams of Li₂CO₃? Molar mass of Li_2CO_3 = 73.891 g/mol Number of moles present in 245 grams Li_2CO_3 = (245/73.891) = 3.32 moles 3 How many atoms constitute 400 grams of gold? Molar mass of Au = 196.96 g/mol 196.96 grams of gold are represented by 6.023×10^{23} atoms 400 grams of gold are represented by = $(400/196.96) \times 6.023 \times 10^{23}$ atoms = 1.2×10^{24} atoms 4 How many molecules constitute 325 grams of N_2O_5 ? Molar mass of N_2O_5 = 108.01 g/mol 108.01 grams of N_2O_5 are represented by 6.023 x 10²³ atoms 325 grams of N_2O_5 are represented by (325/108.01) x 6.023 x 10²³ atoms = 18.1 x 10²³ atoms = 1.81 x 10²⁴ atoms 5 How much does 3.45 moles of $Al_2(SO_4)_3$ weigh? Molar mass of $Al_2(SO_4)_3 = 342.15$ g/mol 1 mole of $Al_2(SO_4)_3$ weighs 342.15 grams 3.45 moles of $Al_2(SO_4)_3$ weigh = 342.15 x 3.45 grams = 1180.41 grams