| Name: | | Date : | |-------|------------------------------|--------| | | Mala Daviala Cavasasiana War | | | | | Mole Particle Conversions Worksheet | | |----|-------------------------|--|------| | Ar | nswer the fo | llowing questions. | | | 1. | | molecules are present in 4 moles of glucose? Also, how many carbon, hydrog
atoms are present? | gen, | | 2. | | molecules are present in 0.4 moles of N_2O_5 ? Also, how many nitrogen and coms are present? | | | 3. | How many
atoms are p | molecules are present in 5 moles of Fe_2O_3 ? Also, how many iron and oxygen resent? | | | 4. | How many
atoms are p | molecules are present in 0.64 moles of CO ₂ ? Also, how many carbon and oxyresent? | yger | | Name : Date : | | |---------------|--| | | | ## Mole Particle Conversions Worksheet ## **Answers** 1. How many molecules are present in 4 moles of glucose? Also, how many carbon, hydrogen, and oxygen atoms are present? Number of glucose ($C_6H_{12}O_6$) molecules = $4 \times 6.023 \times 10^{23}$ molecules = 2.4×10^{24} molecules Number of carbon (C) atoms = $6 \times 2.4 \times 10^{24}$ atoms = 1.4×10^{25} atoms Number of hydrogen (H) atoms = $12 \times 2.4 \times 10^{24}$ atoms = 2.88×10^{25} atoms Number of oxygen (O) atoms = $6 \times 2.4 \times 10^{24}$ atoms = 1.4×10^{25} atoms 2. How many molecules are present in 0.4 moles of N_2O_5 ? Also, how many nitrogen and hydrogen atoms are present? Number of N_2O_5 molecules = 0.4 x 6.023 x 10^{23} molecules = 2.4 x 10^{23} molecules Number of N atoms = 2 x 2.4 x 10^{23} atoms = 4.8 x 10^{23} atoms Number of O atoms = 5 x 2.4 x 10^{23} atoms = 1.2 x 10^{24} atoms 3. How many molecules are present in 5 moles of Fe_2O_3 ? Also, how many iron and oxygen atoms are present? Number of Fe₂O₃ molecules = $5 \times 6.023 \times 10^{23}$ molecules = 3.01×10^{24} molecules Number of Fe atoms = $2 \times 3.01 \times 10^{24}$ atoms = 6.02×10^{24} atoms Number of O atoms = $3 \times 3.01 \times 10^{24}$ atoms = 9.03×10^{24} atoms 4. How many molecules are present in 0.64 moles of CO₂? Also, how many carbon and oxygen atoms are present? Number of CO_2 molecules = 0.64 x 6.023 x 10^{23} molecules = 3.85 x 10^{23} molecules Number of C atoms = 1 x 3.85 x 10^{23} atoms = 3.85 x 10^{23} atoms Number of O atoms = 2 x 3.85 x 10^{23} atoms = 7.7 x 10^{23} atoms