Name: _ _ _ _ Date: _ _ _ _ _ .

Mole Problems Worksheet

Balance the following equations and answer the respective questions.

- 1. How many molecules are present in the following amount of moles?
- (a) 2 moles
- (b) 0.75 moles
- (c) 23 moles
- (d) 0.45 moles
- (e) 32 moles
- 2. How many moles are present in the following?
- (a) 6.023×10^{23}
- (b) 3.4×10^{24}
- (c) 7.5×10^{20}
- (d) 1.204×10^{24}
- (e) 1.5×10^{20}

Name:	 	 	 		 _		_	 _	 Date:	 	_
	 	 	 	-	 -	 	_	 _	 Date.	 	_

Mole Problems Worksheet

Answers

- 1. How many molecules are present in the following amount of moles?
- (a) 2 moles

Number of molecules = $2 \times 6.023 \times 10^{23} = 1.2 \times 10^{24}$

(b) 0.75 moles

Number of molecules = $0.75 \times 6.023 \times 10^{23} = 4.5 \times 10^{23}$

(c) 23 moles

Number of molecules = $23 \times 6.023 \times 10^{23} = 1.38 \times 10^{25}$

(d) 0.45 moles

Number of molecules = $0.45 \times 6.023 \times 10^{23} = 2.7 \times 10^{23}$

(e) 32 moles

Number of molecules = $32 \times 6.023 \times 10^{23} = 1.92 \times 10^{25}$

- 2. How many moles are present in the following?
- (a) 6.023×10^{23}

Number of moles = $(6.023 \times 10^{23})/(6.023 \times 10^{23}) = 1$ mole

(b) 3.4×10^{24}

Number of moles = $(3.4 \times 10^{24})/(6.023 \times 10^{23}) = 5.6$ moles

(c) 7.5×10^{20}

Number of moles = $(7.5 \times 10^{20})/(6.023 \times 10^{23}) = 1.24 \times 10^{-3}$ moles

(d) 1.204×10^{24}

Number of moles = $(1.204 \times 10^{24})/(6.023 \times 10^{23}) = 1.9$ moles

(e) 1.5×10^{20}

Number of moles = $(1.5 \times 10^{20})/(6.023 \times 10^{23}) = 2.5 \times 10^{-4}$ moles