Mole Ratio Worksheet 1. Here is the reaction depicting the formation of NH₃. $$N_2 + 3 H_2 \rightarrow 2NH_3$$ - a) How many moles of N_2 react with H_2 in this reaction? - b) How many moles of NH_3 will be produced if 4.5 moles of H_2 participate in the reaction? - c) In order to produce 5 moles of NH_3 , how many moles of N_2 are required? - 2. Here is the reaction for the formation of water. $$2H_2 + O_2 \rightarrow 2H_2O$$ - a) What is the ratio between H₂ and H₂O in the equation? - b) How many moles of H_2O are produced when 20 moles of O_2 participate in this reaction? - c) What is the ratio between O_2 and H_2O in the equation? - d) How many moles of H_2O are produced when 20 moles of H_2 participate in this reaction? Name : ______ Date : ______ ## Mole Ratio Worksheet ## Answers 1. Here is the reaction depicting the formation of NH_3 . $$N_2 + 3 H_2 \rightarrow 2NH_3$$ a) How many moles of N_2 react with H_2 in this reaction? Number of moles of $N_2 = (7.5/3) = 2.5$ b) How many moles of NH_3 will be produced if 4.5 moles of H_2 participate in the reaction? Number of moles of NH₃ = $(2/3) \times 4.5 = 3$ - c) In order to produce 5 moles of NH₃, how many moles of N₂ are required? Number of moles of N₂ = (5/2) = 2.5 - 2. Here is the reaction for the formation of water. $$2H_2 + O_2 \rightarrow 2H_2O$$ - a) What is the ratio between H_2 and H_2O in the equation? The ratio between H_2 and H_2O is 1:1. - b) How many moles of H_2O are produced when 20 moles of O_2 participate in this reaction? Number of moles of $H_2O = 20 \times (2/1) = 40$ - c) What is the ratio between O_2 and H_2O in the equation? The ratio between O_2 and H_2O is 1:2. - d) How many moles of H₂O are produced when 20 moles of H₂ participate in this reaction? Number of moles of $H_2O = 20 \times (1/1) = 20$