MOLE TO MOLE CALCULATIONS WORKSHEET

Name:		
	Date:	

Answer the following questions.

1) Here is a balanced equation.

$$2NO + O_2 \rightarrow 2NO_2$$

a. How many moles of NO₂ will be produced if 3.6 moles of NO react?

- b. How many moles of NO must react to form 4.67 moles of NO₂?
- 2) Here is a balanced equation.

$$3O_2 + 4Fe \rightarrow 2Fe_2O_3$$

a. How many moles of O_2 must react in order to produce 3 moles of Fe_2O_3 ?

b. How many moles of Fe are needed to produce 6.9 moles of Fe₂O₃?

c. How many moles of O₂ are required to react with 8.6 moles of Fe?

MOLE TO MOLE CALCULATIONS WORKSHEET

Name:		
	Date:	

Answers

1) Here is a balanced equation.

$$2NO + O_2 \rightarrow 2NO_2$$

a. How many moles of NO₂ will be produced if 3.6 moles of NO react?

In this reaction, 2 moles of NO produce 2 moles of NO₂

So, 3.6 moles of NO produce 3.6 moles of NO₂

b. How many moles of NO must react to form 4.67 moles of NO₂?

In this reaction, 2 moles of NO react to produce 2 moles of NO₂

So, 4.67 moles of NO₂ are produced by 4.67 moles of NO

2) Here is a balanced equation.

$$3O_2 + 4Fe \rightarrow 2Fe_2O_3$$

a. How many moles of O_2 must react in order to produce 3 moles of Fe_2O_3 ?

In this reaction, 3 moles of O₂ produce 2 moles of Fe₂O₃

So, the number of moles of O_2 needed to produce 3 moles of Fe_2O_3 = (3/2) x 3 = 4.5 moles

b. How many moles of Fe are needed to produce 6.9 moles of Fe₂O₃?

In this reaction, 4 moles of Fe produce 2 moles of Fe₂O₃

So, the number of moles of Fe needed to produce 6.9 moles of $Fe_2O_3 = (4/2) \times 6.9 = 13.8$ moles

c. How many moles of O₂ are required to react with 8.6 moles of Fe?

In this reaction, 4 moles of Fe react with 3 moles of O₂

So, the number of moles of O_2 that need to react with 8.6 moles of Fe = (%) x 8.6 = 6.45 moles