Name:	_ Date :	

Moles to Particles Worksheet

Answer the following questions.

- 1) Find the number of phosphorus atoms in 3.44 moles of phosphorus.
- 2) How many moles are present in 3.88×10^{25} Ni atoms?
- 3 Find the number of moles present in 145 g of sodium.
- 4 How much do 6.68 moles of molybdenum weigh?
- 5 How many atoms are present in 36 g of germanium?
- 6 How much do 1.43×10^{28} atoms of polonium weigh?
- 7 How much do 4.55×10^{28} atoms of vanadium weigh?
- 8 How many atoms are present in 5.2 moles of titanium?
- 9 How many moles are present in 7.22×10^{23} chromium atoms?
- 10 How many atoms are present in 400 g of palladium?

Name: Date:

Date:

Moles to Particles Worksheet

Answers

1) Find the number of phosphorus atoms in 3.44 moles of phosphorus.

Number of atoms = $3.44 \times 6.023 \times 10^{23} = 2.07 \times 10^{24}$ atoms

2) How many moles are present in 3.88×10^{25} Ni atoms?

Number of moles = $(3.88 \times 10^{25})/(6.023 \times 10^{23}) = 64.4$ moles

3 Find the number of moles present in 145 g of sodium.

Number of moles = 145/23 = 6.3 moles

4 How much do 6.68 moles of molybdenum weigh?

Mass of molybdenum = $6.68 \times 95.94 \text{ grams} = 640.87 \text{ grams}$

6 How many atoms are present in 36 g of germanium?

Number of atoms = $(36/72.6) \times 6.023 \times 10^{23} = 2.98 \times 10^{23}$ atoms

6 How much do 1.43×10^{28} atoms of polonium weigh?

Number of atoms = $209 \times [(1.43 \times 10^{28}/6.023 \times 10^{23})] = 4.96 \times 10^{6} \text{ atoms}$

7 How much do 4.55×10^{28} atoms of vanadium weigh?

Mass of vanadium = $50.94 \times [(4.55 \times 10^{28}/6.023 \times 10^{23})] = 3.8 \times 10^6 \text{ atoms}$

8 How many atoms are present in 5.2 moles of titanium?

Number of atoms = $5.2 \times 6.023 \times 10^{23}$ atoms = 3.1×10^{24} atoms

9 How many moles are present in 7.22 x 10^{23} chromium atoms?

Number of moles = $[(7.22 \times 10^{23}/6.023 \times 10^{23})]$ moles = 1.198 moles

10 How many atoms are present in 400 g of palladium?

Number of atoms = $(400/106.4) \times 6.023 \times 10^{23}$ atoms = 2.26×10^{24} atoms