Name :	
Date :	

Answer the following questions.

1. Here is an unbalanced equation depicting the formation of carbon dioxide (CO₂) as a result of the combustion of Carbon Monoxide (CO):

$$CO(g) + O_2(g) \rightarrow CO_2(g)$$

How much CO is needed to produce 0.69 g of CO₂?

2. How much NaCl is produced (in grams) when Cl_2 reacts with 0.29 g of Nal? The unbalanced equation is provided below:

NaI (s) +
$$CI_2$$
 (g) \rightarrow NaCI (s) + I_2 (g)

3. Determine how much $Ca(OH)_2$ is produced when CaC_2 reacts with 0.64 grams of water, as per the following balanced chemical equation:

$$CaC_{2}(s) + 2 H_{2}O(I) \rightarrow Ca(OH)_{2}(aq) + C_{2}H_{2}(g)$$

Name : ______

Answers

1. Here is an unbalanced equation depicting the formation of carbon dioxide (CO_2) as a result of the combustion of Carbon Monoxide (CO):

$$CO(g) + O_2(g) \rightarrow CO_2(g)$$

How much CO is needed to produce 0.69 g of CO₂?

Firstly we need to balance the equation provided to us. To get the balanced equation, we will multiply CO and CO_2 by 2, resulting in

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

The amount of CO needed to produce 0.69 g of $CO_2 = (28/44) \times 0.69 = 0.439 g$

2. How much NaCl is produced (in grams) when Cl_2 reacts with 0.29 g of Nal? The unbalanced equation is provided below:

NaI (s) + Cl₂ (g)
$$\rightarrow$$
 NaCl (s) + I₂ (g)

Let's balance the equation given. To get the balanced equation, we need to multiply NaI and NaCl by 2, resulting in

$$2Nal(s) + Cl2(g) \rightarrow 2NaCl(s) + I2(g)$$

The amount of NaCl produced by 0.29 g of NaI = $(58.44/149.89) \times 0.29 = 0.113$ g

3. Determine how much $Ca(OH)_2$ is produced when CaC_2 reacts with 0.64 grams of water, as per the following balanced chemical equation:

$$CaC_2$$
 (s) + 2 H_2O (I) \rightarrow $Ca(OH)_2$ (aq) + C_2H_2 (g)

As the equation is already balanced, we can directly calculate the amount of Ca(OH)2 produced in this reaction.

So, when 0.64 grams of water is added to CaC_2 , the amount of $Ca(OH)_2$ produced is = $(74.093/36) \times 0.64 = 1.317 g$