Mole Problems Worksheet

Answer	the	follo	wina	questions
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10110	*****	quodiono

Answer the following questions.
1. Determine the number of moles in 78.5 g of potassium benzoate ($C_7H_5KO_2$)
2. Determine the number of molecules in 5.25 moles of water ($\rm H_2O$).
3. Determine the number of moles of sodium ions in 0.565 moles of $\mathrm{Na_2SO_4}$.
4. Determine the number of moles in 3.77 x 10^{23} molecules of $\rm H_2O$.
5. Determine the number of hydrogen atoms in 15 molecules of benzene.
6. Determine the mass of 0.875 mol of iodine.

7. Determine the number of moles in 12.98 g of methane.

Mole Problems Worksheet

Answers

- 1. Determine the number of moles in 78.5 g of potassium benzoate $(C_7H_5KO_2)$. The molar mass of Potassium Benzoate = $(7 \times C) + (5 \times H) + (1 \times K) + (2 \times O) = (7 \times 12) + (5 \times 1) + (1 \times 39) + (2 \times 16) = 84 + 5 + 39 + 32 = 160 \text{ g/mol}$ Number of moles in 78.5 g of $C_7H_5KO_2 = (78.5/160) = 0.49 \text{ moles of } C_7H_5KO_2$.
- 2. Determine the number of molecules in 5.25 moles of water (H_2O). The number of molecules present in 5.25 moles of water (H_2O) = 5.25 x 6.023 x 10^{23} = 3.16 x 10^{24}
- 3. Determine the number of moles of sodium ions in 0.565 moles of Na_2SO_4 .

 After dissociating Na_2SO_4 produces two Na^+ ions. So the number of moles in 0.565 moles of $Na_2SO_4 = 2 \times 0.565 = 1.13$ moles
- 4. Determine the number of moles in 3.77 x 10^{23} molecules of H_2O . The number of moles in 3.77 x 10^{23} molecules of $H_2O = (3.77 \times 10^{23})/(6.023 \times 10^{23}) = 0.626$ moles
- 5. Determine the number of hydrogen atoms in 15 molecules of benzene.

The number of hydrogen atoms in a single molecule of benzene = 6The number of hydrogen atoms in 15 molecules of benzene = $15 \times 6 = 90$

- 6. Determine the mass of 0.875 mol of iodine.
 - 1 mole of iodine weighs 127 grams.

The mass of 0.875 moles of iodine = 2 x 0.875 moles x 127 grams/mol = 222.25 grams

- 7. Determine the number of moles in 12.98 g of methane.
 - 1 mole of methane weighs 16 grams.

The number of atoms in 12.98 grams of $CH_4 = 12.98/16$ moles = 0.811 moles