Mole Problems Worksheet

Answer	the	following	questions.
AII3 W CI	LIIC	TOHOWING	questions

- 1) How many grams are in 4.5 moles of Li_2O ?
- 2) How many moles are in 3.4×10^{23} molecules of H_2SO_4 ?
- 3) How many molecules are in 25.0 grams of NH₃?
- 4) How many molecules are in 23.0 moles of oxygen?
- 5) How many grams is 1.25 moles of potassium bromide?

- 6) How many atoms are present in 3.50 grams of gold?
- 7) How many moles are in 5.55×10^{33} molecules of H_2SO_4 ?

Mole Problems Worksheet

Answers

1) How many grams are in 4.5 moles of Li₂O?

```
134.55 grams
```

1 mole of $Li_2O = 29.9$ grams

 $4.5 \text{ moles of Li}_{2}O = 29.9 \text{ x } 4.5 \text{ grams} = 134.55 \text{ grams}$

2) How many moles are in 3.4×10^{23} molecules of H_2SO_4 ?

0.56 moles

1 mole = 6.023×10^{23} (Avogadro's Number)

Number of moles in 3.4×10^{23} molecules of $H_2SO_4 = 0.56$ moles

3) How many molecules are in 25.0 grams of NH₃?

```
8.85 \times 10^{23} molecules
```

1 mole = 6.023×10^{23} (Avogadro's Number)

1 mole of NH₃ = 17 grams of NH₃

Number of molecules present in 25 grams of NH₃ = $6.023 \times 10^{23} \times (25/17) = 8.85 \times 10^{23}$

4) How many molecules are in 23.0 moles of oxygen?

 1.38×10^{25} molecules

1 mole = 6.023×10^{23} (Avogadro's Number)

Number of molecules present in 23 moles of O_2 = 6.023 x 10^{23} x 23 = 1.38 x 10^{25}

5) How many grams is 1.25 moles of potassium bromide?

149 grams

The weight of 1.25 moles of KBr = 1.25 x 119 grams = 148.75 grams \sim 149 grams

6) How many atoms are present in 3.50 grams of gold?

 $1.07 \times 10^{22} \text{ atoms}$

The number of atoms present in 3.5 g of Au = $6.023 \times 10^{23} \times (3.5/196.97) = 1.07 \times 10^{22}$

7) How many moles are in 5.55×10^{33} molecules of H_2SO_4 ?

 9.2×10^9

Number of moles in 5.55×10^{33} molecules of $H_2SO_4 = 5.55 \times 10^{33}/6.023 \times 10^{23} = 0.92 \times 10^{10} = 9.2 \times 10^9$