Mole Problems Worksheet | Answer | the | following | questions. | |-----------|------|-----------|------------| | AII3 W CI | LIIC | TOHOWING | questions | - 1) How many grams are in 4.5 moles of Li_2O ? - 2) How many moles are in 3.4×10^{23} molecules of H_2SO_4 ? - 3) How many molecules are in 25.0 grams of NH₃? - 4) How many molecules are in 23.0 moles of oxygen? - 5) How many grams is 1.25 moles of potassium bromide? - 6) How many atoms are present in 3.50 grams of gold? - 7) How many moles are in 5.55×10^{33} molecules of H_2SO_4 ? ## Mole Problems Worksheet ## **Answers** 1) How many grams are in 4.5 moles of Li₂O? ``` 134.55 grams ``` 1 mole of $Li_2O = 29.9$ grams $4.5 \text{ moles of Li}_{2}O = 29.9 \text{ x } 4.5 \text{ grams} = 134.55 \text{ grams}$ 2) How many moles are in 3.4×10^{23} molecules of H_2SO_4 ? 0.56 moles 1 mole = 6.023×10^{23} (Avogadro's Number) Number of moles in 3.4×10^{23} molecules of $H_2SO_4 = 0.56$ moles 3) How many molecules are in 25.0 grams of NH₃? ``` 8.85 \times 10^{23} molecules ``` 1 mole = 6.023×10^{23} (Avogadro's Number) 1 mole of NH₃ = 17 grams of NH₃ Number of molecules present in 25 grams of NH₃ = $6.023 \times 10^{23} \times (25/17) = 8.85 \times 10^{23}$ 4) How many molecules are in 23.0 moles of oxygen? 1.38×10^{25} molecules 1 mole = 6.023×10^{23} (Avogadro's Number) Number of molecules present in 23 moles of O_2 = 6.023 x 10^{23} x 23 = 1.38 x 10^{25} 5) How many grams is 1.25 moles of potassium bromide? 149 grams The weight of 1.25 moles of KBr = 1.25 x 119 grams = 148.75 grams \sim 149 grams 6) How many atoms are present in 3.50 grams of gold? $1.07 \times 10^{22} \text{ atoms}$ The number of atoms present in 3.5 g of Au = $6.023 \times 10^{23} \times (3.5/196.97) = 1.07 \times 10^{22}$ 7) How many moles are in 5.55×10^{33} molecules of H_2SO_4 ? 9.2×10^9 Number of moles in 5.55×10^{33} molecules of $H_2SO_4 = 5.55 \times 10^{33}/6.023 \times 10^{23} = 0.92 \times 10^{10} = 9.2 \times 10^9$