Name: _____ Date: _____

Mole Problems Worksheet

Balance the following equations and answer the respective questions. 1. ____ NO + ___ $O_2 \rightarrow$ ____ N O_2 (a) 2 moles of NO will react with _____ mole(s) of O₂ to produce _____ mole(s) of NO₂. (b) _____ moles $NO_2 = 3.6$ moles $O_2 \times (2 \text{ moles of } NO_2 / 1 \text{ mole of } O_2)$ (c) Approximately _____ mol NO is required to produce 4.67 mol NO_2 2. ____ $AIF_3 + ___ O_2 \rightarrow ___ AI_2O_3 + ___ F_2$ (a) 20 moles of AIF₃ will produce _____ moles of F₂. (b) _____ moles of AIF₃ will react with 0.6 moles of O₂. 3. _____ O_2 + ____ Fe_2O_3 (a) _____ moles of oxygen gas react with ____ moles of iron to produce _____ moles of iron (III) oxide. (b) _____ moles of $\rm O_2$ are required to produce 3.0 moles of iron (III) oxide.

4. _____ $NH_3 +$ _____ $O_2 \rightarrow$ _____ $N_2 +$ _____ H_2O

(a) 20 moles of NH_3 are needed to produce moles of H_2O .

(b) _____ mol N_2 is produced from 3.5 mol O_2 in this reaction.

Name: _____ Date: _____

Mole Problems Worksheet

Answers

1. \bigcirc NO + \bigcirc O₂ \rightarrow \bigcirc NO₂

- (a) 2 moles of NO will react with $\underline{}$ mole(s) of O_2 to produce $\underline{}$ mole(s) of NO_2 .
- (b) _____ moles NO_2 = 3.6 moles $O_2 \times (2 \text{ moles of } NO_2 / 1 \text{ mole of } O_2)$
- (c) Approximately 4.67 mol NO is required to produce 4.67 mol NO₂

- 2. $A = AIF_3 + B = CO_2 \rightarrow CO_3 + CO_3 + CO_4 \rightarrow CO_5 \rightarrow CO$
- (a) 20 moles of AIF₃ will produce ____30 ___ moles of F₂.
- (b) $\underline{0.8}$ moles of AIF₃ will react with 0.6 moles of O₂.

- 3. $\underline{}$ O₂ + $\underline{}$ Fe \rightarrow $\underline{}$ Fe₂O₃
- (a) _____ moles of oxygen gas react with ____ 4 ___ moles of iron to produce ____ 2 ___ moles of iron (III) oxide.
- (b) 4.5 moles of O_2 are required to produce 3.0 moles of iron (III) oxide.

- 4. $\underline{\qquad}$ NH₃ + $\underline{\qquad}$ O₂ \Rightarrow $\underline{\qquad}$ N₂ + $\underline{\qquad}$ 6 H₂O
- (a) 20 moles of NH_3 are needed to produce 30 moles of H_2O .
- (b) $\underline{}$ mol N_2 is produced from 3.5 mol O_2 in this reaction.