Chemistry Learner

It's all about Chemistry

Home / Organic chemistry / E1 Reaction

E1 Reaction

What is E1 Reaction?

E1 reaction is a type of elimination reaction in organic compounds. A beta-hydrogen and a leaving group attached to two adjacent carbon atoms are removed from a compound (substrate) to form a double bond. The removal usually takes place in two steps in the presence of a Lewis base or acid, resulting in an alkene. The rate of reaction is proportional to the concentration of the substrate and not on the base. Since the base is not involved in the rate-determining step, its nature is unimportant. The E1 reaction is common in alkyl halide during dehydrohalogenation and alcohol during dehydration [1-10].

E1 Reaction

Characteristics of E1 Reaction

  • Also known as unimolecular elimination
  • Two-step removal mechanism process – ionization and deprotonation
  • Non-concerted with a carbocation intermediate
  • Carbon goes from sp3 to sp2 hybridization state
  • A first-order reaction, i.e., the rate is proportional to the concentration of the substrate (R = k [substrate])
  • The rate-determining step is the loss of the leaving group.
  • The reaction rate increases as the number of alkyl groups on the carbocation increases. The rate is highest for tertiary carbocation, followed by secondary and primary.
  • Regioselective and stereospecific – the reaction follows Zaitsev’s rule, i.e., favors the formation of Zaitsev product.

Examples of E1 Reaction [1-11]

1. Dehydration of Alcohols

In the presence of sulfuric acid (H2SO4), 2-propanol (C3H7OH) loses a molecule of water (H2O) to form propene (C3H6). This process is known as acid-catalyzed dehydration.

C3H7OH → C3H6 + H2O

2. Dehydrohalogenation of Alkyl Halides

In the presence of methanol (CH3OH), 2-Bromo-3-methyl butane (C5H11Br) converts into a combination of 2-methyl-2-butene (C5H10) and 2-methyl-3-butene (C5H10).

C5H11Br → C5H10 + HBr

Mechanism of E1 Reaction

The mechanism of the E1 reaction takes place in two steps [1-10].

Step 1: Formation of carbocation – The leaving group leaves the alpha-carbon in the presence of a polar protic solvent.

Step 2: Deprotonation – The alpha-carbon reacts with the base, resulting in the deprotonation at beta-carbon. The final product is an alkene.

Zaitsev’s rule is applied where the most substituted alkene is formed.

SN1 and E1 Reaction

Both SN1 and E1 reactions have a similar first step in their reaction mechanisms, where a carbocation forms the intermediate. The two reactions favor tertiary (3rd degree) carbocation over primary (1st degree) due to carbocation’s stability. Both are first-order reactions in which the rate depends on the concentration of the substrate. The following table lists the differences between the two reactions.

E1 ReactionSN1 Reaction
Type of reactionElimination of a functional groupSubstitution of a nucleophile
MechanismBase pulls off a beta-hydrogenNucleophile attacks the carbocation
HeatImportantNot so important
Double bondsYesNo
Carbon atom involvementTwo adjacentOne central



Leave a Reply

Your email address will not be published. Required fields are marked *

Trending Topics